Parallel-in-Time with Fully Finite Element Multigrid for 2-D Space-fractional Diffusion Equations

The paper investigates a non-intrusive parallel time integration with multigrid for space-fractional diffusion equations in two spatial dimensions. We firstly obtain a fully discrete scheme via using the linear finite element method to discretize spatial and temporal derivatives to propagate solutions. Next, we present a non-intrusive time-parallelization and its two-level convergence analysis, where we algorithmically and theoretically generalize the MGRIT to time-dependent fine time-grid propagators. Finally, numerical illustrations show that the obtained numerical scheme possesses the saturation error order, theoretical results of the two-level variant deliver good predictions, and significant speedups can be achieved when compared to parareal and the sequential time-stepping approach.

[1]  Hao Chen,et al.  A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations , 2018, J. Comput. Phys..

[2]  Saudi Arabia,et al.  A NOVEL SPECTRAL APPROXIMATION FOR THE TWO-DIMENSIONAL FRACTIONAL SUB-DIFFUSION PROBLEMS , 2015 .

[3]  Tao Zhou,et al.  Fast parareal iterations for fractional diffusion equations , 2017, J. Comput. Phys..

[4]  Changpin Li,et al.  Numerical Solution of Fractional Diffusion-Wave Equation , 2016 .

[5]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[6]  Seakweng Vong,et al.  Second-order BDF time approximation for Riesz space-fractional diffusion equations , 2018, Int. J. Comput. Math..

[7]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[8]  Yang Zhang,et al.  A GPU-based Fast Solution for Riesz Space Fractional Reaction-Diffusion Equation , 2015, 2015 18th International Conference on Network-Based Information Systems.

[9]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[10]  Xiao-Qing Jin,et al.  Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations , 2015 .

[11]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[12]  Kejia Pan,et al.  An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation , 2017, Numerical Algorithms.

[13]  Fawang Liu,et al.  Finite element method for space-time fractional diffusion equation , 2015, Numerical Algorithms.

[14]  Ting-Zhu Huang,et al.  Strang-type preconditioners for solving fractional diffusion equations by boundary value methods , 2013, J. Comput. Appl. Math..

[15]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2014 .

[16]  Qianqian Yang,et al.  A preconditioned numerical solver for stiff nonlinear reaction-diffusion equations with fractional Laplacians that avoids dense matrices , 2015, J. Comput. Phys..

[17]  Fawang Liu,et al.  Stability and convergence of a finite volume method for the space fractional advection-dispersion equation , 2014, J. Comput. Appl. Math..

[18]  Chunye Gong,et al.  A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method , 2013 .

[19]  TZ , 2019, Springer Reference Medizin.

[20]  K. Mustapha,et al.  Finite volume element method for two-dimensional fractional subdiffusion problems , 2015, 1510.07377.

[21]  G. Shishkin Optimal difference schemes on piecewise‐uniform meshes for a singularly perturbed parabolic convection‐diffusion equation , 2008 .

[22]  Zhi-Zhong Sun,et al.  A finite difference scheme for semilinear space-fractional diffusion equations with time delay , 2016, Appl. Math. Comput..

[23]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[24]  Siu-Long Lei,et al.  Fast algorithms for high-order numerical methods for space-fractional diffusion equations , 2017, Int. J. Comput. Math..

[25]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[26]  Fawang Liu,et al.  Fast Finite Difference Approximation for Identifying Parameters in a Two-dimensional Space-fractional Nonlocal Model with Variable Diffusivity Coefficients , 2016, SIAM J. Numer. Anal..

[27]  Guojian Tang,et al.  Computational Challenge of Fractional Differential Equations and the Potential Solutions: A Survey , 2015 .

[28]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[29]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[30]  Fangying Song,et al.  Spectral direction splitting methods for two-dimensional space fractional diffusion equations , 2015, J. Comput. Phys..

[31]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[32]  Minghua Chen,et al.  Fourth Order Accurate Scheme for the Space Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[33]  Hong Wang,et al.  A fast finite volume method for conservative space-fractional diffusion equations in convex domains , 2016, J. Comput. Phys..

[34]  Hong Wang,et al.  A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in ℝ2 , 2015, SIAM J. Sci. Comput..

[35]  Shu-Lin Wu A second-order parareal algorithm for fractional PDEs , 2016, J. Comput. Phys..

[36]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[37]  Edson Pindza,et al.  Fourier spectral method for higher order space fractional reaction-diffusion equations , 2016, Commun. Nonlinear Sci. Numer. Simul..

[38]  X. Zhu,et al.  Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains , 2016, J. Comput. Phys..

[39]  X. Q. Yue Fully Finite Element Adaptive AMG Method for Time-Space Caputo-Riesz Fractional Diffusion Equations , 2018, Advances in Applied Mathematics and Mechanics.