Optical entanglement of co-propagating modes

Optical entanglement — a key requirement for many quantum communication protocols — is typically formed between two distinct beams, requiring repeated combination of complex resources, which becomes increasingly difficult as the number of entangled information channels increases. Here entanglement between two spatial modes within one beam is demonstrated.

[1]  Barry C. Sanders,et al.  Continuous-variable quantum-state sharing via quantum disentanglement , 2004, quant-ph/0411191.

[2]  J. Janousek,et al.  Investigation of non-classical light and its application in ultrasensitive measurements , 2008 .

[3]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[4]  C. Fabre,et al.  Tools for multimode quantum information: modulation, detection, and spatial quantum correlations. , 2007, Physical review letters.

[5]  Multimode squeezing of frequency combs , 2006 .

[7]  Coherent analysis of quantum optical sideband modes. , 2005, Optics letters.

[8]  Xiaolong Su,et al.  Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. , 2006, Physical review letters.

[9]  A. Furusawa,et al.  Experimental generation of four-mode continuous-variable cluster states , 2008, 2008 International Nano-Optoelectronics Workshop.

[10]  N. Treps,et al.  Entangling the Spatial Properties of Laser Beams , 2008, Science.

[11]  M. Beck,et al.  Quantum state tomography with array detectors. , 2000, Physical review letters.

[12]  Continuous-variable spatial entanglement for bright optical beams (7 pages) , 2005, quant-ph/0501144.

[13]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[14]  G Leuchs,et al.  Continuous variable entanglement and squeezing of orbital angular momentum states. , 2009, Physical review letters.

[15]  Magnus T. L. Hsu,et al.  Spatial-state Stokes-operator squeezing and entanglement for optical beams , 2009, 0901.4813.

[16]  Doyeol Ahn,et al.  Dense coding in entangled states , 2002 .

[17]  Radim Filip,et al.  Experimental entanglement distillation of mesoscopic quantum states , 2008, 0812.0709.

[18]  L. A. Lugiato,et al.  Spatial structure of a squeezed vacuum , 1993, International Commission for Optics.

[19]  Jaromir Fiurasek,et al.  Preparation of distilled and purified continuous-variable entangled states , 2008, 0812.0738.

[20]  P K Lam,et al.  Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. , 2002, Physical review letters.

[21]  N. Treps,et al.  An experimental investigation of criteria for continuous variable entanglement , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[22]  P. Lam,et al.  Generation of Squeezing in Higher Order Hermite-Gaussian Modes with an Optical Parametric Amplifier , 2006, quant-ph/0606085.

[23]  Gatti,et al.  Spatial structure of a squeezed vacuum. , 1993, Physical review letters.

[24]  N. C. Menicucci,et al.  Ultracompact generation of continuous-variable cluster states , 2007, quant-ph/0703096.