Improving precision in gel electrophoresis by stepwisely decreasing variance components.

[1]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[2]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[3]  V. Neuhoff,et al.  Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis , 1985 .

[4]  V. Neuhoff,et al.  Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G‐250 and R‐250 , 1988, Electrophoresis.

[5]  J. Vindevogel,et al.  Resolution optimization in micellar electrokinetic chromatography: use of Plackett-Burman statistical design for the analysis of testosterone esters , 1991 .

[6]  D. L. Massart,et al.  Ruggedness tests for a high-performance liquid Chromatographic assay: Comparison of an evaluation at two and three levels by using two-level Plackett-Burman designs , 1995 .

[7]  D. L. Massart,et al.  Ruggedness tests on the high-performance liquid chromatography assay of the United States Pharmacopeia xxii for tetracycline hydrochloride - a comparison of experimental-designs and statistical interpretations , 1995 .

[8]  Anders Blomberg,et al.  Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two‐dimensional gel electrophoresis , 1995, Electrophoresis.

[9]  Y. Heyden,et al.  Determination of the enantiomeric purity of dexfenfluramine by capillary electrophoresis: use of a Plackett—Burman design for the optimization of the separation , 1996 .

[10]  Age K. Smilde,et al.  Robustness of analytical chemical methods and pharmaceutical technological products. , 1996 .

[11]  M. Ünlü,et al.  Difference gel electrophoresis. A single gel method for detecting changes in protein extracts , 1997, Electrophoresis.

[12]  H. Wätzig,et al.  Peak recognition imitating human judgement , 1998 .

[13]  S. Parsons,et al.  High purity, high yield procedure for butyrolactone I production from Aspergillus terreus , 1999 .

[14]  J. Sanz,et al.  Experimental design methodologies to optimize monobutyltin chloride determination by hydride generation gas phase molecular absorption spectrometry. , 1999, Talanta.

[15]  J. Sanz,et al.  Optimization of dimethyltin chloride determination by hydride generation gas phase molecular absorption spectrometry using a central composite design. , 2000, Talanta.

[16]  Selection of alcohols through Plackett-Burman design in lipase-catalyzed synthesis of anthranilic acid esters , 2001 .

[17]  Matthew Davison,et al.  Validation and development of fluorescence two‐dimensional differential gel electrophoresis proteomics technology , 2001, Proteomics.

[18]  Y. Heyden,et al.  Guidance for robustness/ruggedness tests in method validation. , 2001, Journal of pharmaceutical and biomedical analysis.

[19]  Y. Vander Heyden,et al.  Screening of an enterovirus specific RT-PCR ELISA method for the quantification of enterovirus genomes in human body fluids by means of a three-level experimental design. , 2001, Journal of pharmaceutical and biomedical analysis.

[20]  Wayne F. Patton,et al.  Detection technologies in proteome analysis. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[21]  Y. Vander Heyden,et al.  Screening and optimisation of an ELISA method for the quantitative detection of enterovirus specific RT-PCR products by means of a two-level experimental design. , 2002, Journal of pharmaceutical and biomedical analysis.

[22]  Mark P Molloy,et al.  Overcoming technical variation and biological variation in quantitative proteomics , 2003, Proteomics.

[23]  H. Meyer,et al.  Approaches for the quantification of protein concentration ratios , 2003, Proteomics.

[24]  Peter Karuso,et al.  A fluorescent natural product for ultra sensitive detection of proteins in one‐dimensional and two‐dimensional gel electrophoresis , 2003, Proteomics.

[25]  Stephen O. David,et al.  A novel experimental design for comparative two‐dimensional gel analysis: Two‐dimensional difference gel electrophoresis incorporating a pooled internal standard , 2003, Proteomics.

[26]  Pier Giorgio Righetti,et al.  Blue silver: A very sensitive colloidal Coomassie G‐250 staining for proteome analysis , 2004, Electrophoresis.

[27]  G. Smejkal The Coomassie chronicles: past, present and future perspectives in polyacrylamide gel staining , 2004, Expert review of proteomics.

[28]  Joachim Klose,et al.  High reproducibility of large‐gel two‐dimensional electrophoresis , 2004, Electrophoresis.

[29]  Pier Giorgio Righetti,et al.  Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. , 2004, Journal of chromatography. A.

[30]  Kathryn S Lilley,et al.  Impact of replicate types on proteomic expression analysis. , 2005, Journal of proteome research.

[31]  H. Wätzig,et al.  Precision and variance components in quantitative gel electrophoresis , 2005, Electrophoresis.

[32]  John M. Walker,et al.  The Proteomics Protocols Handbook , 2005, Humana Press.

[33]  Elisabetta Gianazza,et al.  Protein stains for proteomic applications: Which, when, why? , 2006, Proteomics.

[34]  Shen Luo,et al.  Quantitation of protein on gels and blots by infrared fluorescence of Coomassie blue and Fast Green. , 2006, Analytical biochemistry.

[35]  N. Tannu,et al.  Effect of staining reagent on peptide mass fingerprinting from in‐gel trypsin digestions: A comparison of SyproRuby™ and DeepPurple™ , 2006, Electrophoresis.

[36]  S. A. Rizvi,et al.  Polymeric alkenoxy amino acid surfactants: V. Comparison of carboxylate and sulfate head group polymeric surfactants for enantioseparation in MEKC , 2007, Electrophoresis.

[37]  Ulrich Mansmann,et al.  Improved comparative proteome analysis based on two‐dimensional gel electrophoresis , 2007, Proteomics.

[38]  J. Coorssen,et al.  Assessing detection methods for gel-based proteomic analyses. , 2007, Journal of proteome research.

[39]  U. Trivedi,et al.  Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. , 2007, Bioresource technology.

[40]  M. A. Rauf,et al.  Photocatalytic decoloration of Coomassie Brilliant Blue with titanium oxide , 2007 .

[41]  Stefan Wiemann,et al.  Infrared‐based protein detection arrays for quantitative proteomics , 2007, Proteomics.

[42]  J. Timms,et al.  Difference gel electrophoresis , 2008, Proteomics.

[43]  R. Rodrigues,et al.  Production of organic solvent tolerant lipase by Staphylococcus caseolyticus EX17 using raw glycerol as substrate , 2008 .

[44]  Hui Zhang,et al.  Quantitative gel electrophoresis: sources of variation. , 2008, Journal of proteome research.

[45]  Y. Chang,et al.  Medium optimization for enhanced production of Rifamycin B by Amycolatopsis mediterranei S699: Combining a full factorial design and a statistical approach , 2008 .

[46]  Sonja Zehetmayer,et al.  Biological Variation of the Platelet Proteome in the Elderly Population and Its Implication for Biomarker Research*S , 2008, Molecular & Cellular Proteomics.

[47]  L. Mei,et al.  Medium Optimization Based on Statistical Methodologies for Pristinamycins Production by Streptomyces pristinaespiralis , 2008, Applied biochemistry and biotechnology.