Incorporation of 3 μm SiCp into Titanium surfaces using a 2.8 kW laser beam of 186 and 373 MJ m-2 energy densities in a nitrogen environment

[1]  T. N. Baker,et al.  XRD and XPS studies on surface MMC layer of SiC reinforced Ti–6Al–4V alloy , 2003 .

[2]  V. Ocelík,et al.  SiCp/Ti6Al4V functionally graded materials produced by laser melt injection , 2002 .

[3]  T. N. Baker,et al.  Study of the surface layer formed by the laser processing of Ti–6Al–4V alloy in a dilute nitrogen environment , 2001 .

[4]  J. Hosson,et al.  Electron microscopy of reaction layers between SiC and Ti-6Al- 4V after laser embedding , 1998 .

[5]  T. N. Baker,et al.  Characterisation of sugar MMC layers developed in Ti-6AI-4V alloy using combination of SiCp and dilute nitrogen environment , 1998 .

[6]  T. N. Baker,et al.  Metal matrix composite layers formed by laser processing of commercial purity Ti–SiCp in nitrogen environment , 1996 .

[7]  T. N. Baker,et al.  Crack-free hard surfaces produced by laser nitriding of commercial purity titanium , 1994 .

[8]  T. N. Baker,et al.  Design of surface in situ metal–ceramic composite formation via laser treatment , 1994 .

[9]  J. Abboud,et al.  Titanium aluminide composites produced by laser melting , 1994 .

[10]  J. Abboud,et al.  Microstructure of titanium injected with SiC particles by laser processing , 1991 .

[11]  J. D. Ayers,et al.  LASER MELT-PARTICLE INJECTION PROCESSING , 1985 .

[12]  J. D. Ayers,et al.  Abrasive wear with fine diamond particles of carbide-containing aluminum and titanium alloy surfaces , 1984 .

[13]  J. D. Ayers,et al.  A Laser Processing Technique for Improving the Wear Resistance of Metals , 1981 .

[14]  I. L. Singer,et al.  Surface Hardness and Abrasive Wear Resistance of Ion-Implanted Steels , 1981 .