Summarization techniques for visualization of large, multidimensional datasets
暂无分享,去创建一个
[1] Ulrich Güntzer,et al. Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.
[2] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[3] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[4] Aiko M. Hormann,et al. Programs for Machine Learning. Part I , 1962, Inf. Control..
[5] Hong Shen,et al. Construct robust rule sets for classification , 2002, KDD.
[6] José Fernando Rodrigues,et al. Enhancing Data Visualization Techniques , 2003 .
[7] Chris North,et al. Temporal, geographical and categorical aggregations viewed through coordinated displays: a case study with highway incident data , 1999, NPIVM '99.
[8] Mei C. Chuah,et al. Dynamic aggregation with circular visual designs , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).
[9] Heidrun Schumann,et al. A Flexible Approach for Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..
[10] Thomas A. DeFanti,et al. Visualization in Scientific Computing-A Synopsis , 1987, IEEE Computer Graphics and Applications.
[11] Tomasz Imielinski,et al. Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.
[12] Hans-Peter Kriegel,et al. Spatial Data Mining: A Database Approach , 1997, SSD.
[13] Jiuyong Li,et al. Optimal and Robust Rule Set Generation , 2002 .
[14] Jiong Yang,et al. TAR: temporal association rules on evolving numerical attributes , 2001, Proceedings 17th International Conference on Data Engineering.
[15] Jade Goldstein-Stewart,et al. Using aggregation and dynamic queries for exploring large data sets , 1994, CHI.
[16] Douglas M. Hawkins. Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.
[17] James T. Enns,et al. Building perceptual textures to visualize multidimensional datasets , 1998 .
[18] T. Kohonen,et al. Visual Explorations in Finance with Self-Organizing Maps , 1998 .
[19] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[20] Weili Wu,et al. Modeling Spatial Dependencies for Mining Geospatial Data , 2001, SDM.
[21] John F. Roddick,et al. Paradigms for Spatial and Spatio-Temporal Data Mining , 2001 .
[22] Christopher G. Healey,et al. Assisted Visualization of E-Commerce Auction Agents , 2001, Graphics Interface.
[23] Jiawei Han,et al. Geographic Data Mining and Knowledge Discovery , 2001 .
[24] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[25] Christopher G. Healey,et al. Attribute preserving dataset simplification , 2001, Proceedings Visualization, 2001. VIS '01..
[26] Ramakrishnan Srikant,et al. Fast algorithms for mining association rules , 1998, VLDB 1998.
[27] D.M. Mount,et al. An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[28] Philip S. Yu,et al. Outlier detection for high dimensional data , 2001, SIGMOD '01.
[29] Hans-Peter Kriegel,et al. 3D Shape Histograms for Similarity Search and Classification in Spatial Databases , 1999, SSD.
[30] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD '00.
[31] Shashi Shekhar,et al. Detecting graph-based spatial outliers: algorithms and applications (a summary of results) , 2001, KDD '01.
[32] Petra Perner,et al. Empirical Evaluation of Feature Subset Selection Based on a Real-World Data Set , 2000, PKDD.
[33] Hans-Peter Kriegel,et al. Knowledge Discovery in Spatial Databases , 1999, DAGM-Symposium.
[34] Arthur Flexer,et al. On the use of self-organizing maps for clustering and visualization , 1999, Intell. Data Anal..