Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

[1]  T. Terrazas,et al.  Stem and root anatomy of two species of Wilcoxia Britton & Rose (Cactaceae) of northeast Mexico , 2017 .

[2]  G. Canché-Escamilla,et al.  Characterization of lignocellulosic residues of henequen and their use as a bio-oil source , 2014 .

[3]  F. Gomes,et al.  S/G ratio and lignin structure among Eucalyptus hybrids determined by Py-GC/MS and nitrobenzene oxidation , 2013 .

[4]  H. Ochoterena,et al.  Molecular phylogeny, origin and taxonomic implications of the tribe Cacteae (Cactaceae) , 2013 .

[5]  T. Terrazas,et al.  El hábito y la forma de crecimiento en la tribu Cacteae (Cactaceae, Cactoideae) , 2012 .

[6]  T. Terrazas,et al.  Stem and wood allometric relationships in Cacteae (Cactaceae) , 2011, Trees.

[7]  G. North,et al.  Root contraction helps protect the "living rock" cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. , 2010, American journal of botany.

[8]  C. Chapple,et al.  The genetics of lignin biosynthesis: connecting genotype to phenotype. , 2010, Annual review of genetics.

[9]  Claudio F. Lima,et al.  Determination of Eucalyptus spp lignin S/G ratio: a comparison between methods. , 2010, Bioresource technology.

[10]  John Ralph,et al.  Lignin Biosynthesis and Structure1 , 2010, Plant Physiology.

[11]  Andrea Polle,et al.  FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae , 2010, Wood Science and Technology.

[12]  J. Weng,et al.  Convergent Evolution of Syringyl Lignin Biosynthesis via Distinct Pathways in the Lycophyte Selaginella and Flowering Plants[C][W] , 2010, Plant Cell.

[13]  Kaori Saito,et al.  Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. , 2010, Journal of agricultural and food chemistry.

[14]  T. Terrazas,et al.  Variación de la anatomía de la madera de Pachycereus pecten-aboriginum (Cactaceae) , 2009 .

[15]  Björn Sundberg,et al.  Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. , 2008, Current opinion in plant biology.

[16]  Olga Derkacheva,et al.  Investigation of Lignins by FTIR Spectroscopy , 2008 .

[17]  M. Olson Wood ontogeny as a model for studying heterochrony, with an example of paedomorphosis in Moringa (Moringaceae) , 2007 .

[18]  J. Mauseth Structure-function relationships in highly modified shoots of cactaceae. , 2006, Annals of botany.

[19]  Derek Stewart,et al.  Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and 13C‐NMR cross‐polarization/magic‐angle spinning spectroscopy , 2006 .

[20]  R. Sun,et al.  Comparative study of organosolv lignins from wheat straw , 2006 .

[21]  T. Terrazas,et al.  Wood anatomical variation of Neobuxbaumia tetetzo: A columnar Cactaceae , 2005 .

[22]  J. Mauseth Wide-band tracheids are present in almost all species of Cactaceae , 2004, Journal of Plant Research.

[23]  Lauro López-Mata,et al.  Características morfo-anatómicas y metabolismo fotosintético en plántulas de stenocereus queretaroensis (cactaceae): su significado adaptativo , 2003 .

[24]  J. Mauseth,et al.  Shoot Anatomy and Morphology , 2002 .

[25]  N. Eckardt Probing the Mysteries of Lignin Biosynthesis , 2002, The Plant Cell Online.

[26]  Björn Sundberg,et al.  Unravelling cell wall formation in the woody dicot stem , 2001, Plant Molecular Biology.

[27]  J. Mauseth,et al.  Root Wood Differs Strongly from Shoot Wood within Individual Plants of Many Cactaceae , 2001, International Journal of Plant Sciences.

[28]  J. Mauseth,et al.  Theoretical aspects of surface-to-volume ratios and water-storage capacities of succulent shoots. , 2000, American journal of botany.

[29]  K. Niklas,et al.  Wood biomechanics and anatomy of PACHYCEREUS PRINGLEI. , 2000, American journal of botany.

[30]  K. Niklas,et al.  Biomechanics of the columnar cactus Pachycereus pringlei. , 1999, American journal of botany.

[31]  Marc Van Montagu,et al.  Biosynthesis and genetic engineering of lignin , 1998 .

[32]  D. Cornejo,et al.  Analysis of form and function in North American columnar cacti (tribe Pachycereeae). , 1997, American journal of botany.

[33]  J. Mauseth,et al.  DEVELOPMENTALLY VARIABLE, POLYMORPHIC WOODS IN CACTI , 1995 .

[34]  T. Higuchi Biosynthesis and Biodegradation of Wood Components , 1992 .

[35]  D. Hon,et al.  Wood and Cellulosic Chemistry , 1990 .

[36]  T. Higuchi,et al.  Lignin biochemistry: Biosynthesis and biodegradation , 1990, Wood Science and Technology.

[37]  R. Blanchette,et al.  Resistance of hardwood vessels to degradation by white rot Basidiomycetes , 1988 .

[38]  Park S. Nobel,et al.  The Cactus Primer , 1986 .

[39]  Hou‐min Chang,et al.  Topochemistry of the fungal degradation of lignin in birch wood as related to the distribution of guaiacyl and syringyl lignins , 1975, Wood Science and Technology.

[40]  D. Goring,et al.  Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy , 1975, Wood Science and Technology.

[41]  A. Gibson Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). , 1973 .

[42]  P. Müller Mechanical stress-grading of structural timber in Europe, North America and Australia with a research programme on this field for South Africa , 1968, Wood Science and Technology.

[43]  R. Dixon,et al.  Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity. , 2013, The Plant journal : for cell and molecular biology.

[44]  L. Eguiarte,et al.  Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). , 2011, American journal of botany.

[45]  Grigore Ghica,et al.  PYROLYSIS OF LIGNIN - A POTENTIAL METHOD FOR OBTAINING CHEMICALS AND/OR FUELS , 2011 .

[46]  Gerald A Tuskan,et al.  Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis , 2006, Applied biochemistry and biotechnology.

[47]  L. C. Abreu,et al.  Composición química de tres maderas en la provincia de Pinar del Río, Cuba a tres alturas del fuste comercial.Parte Nº 1: Corymbia citriodora , 2004 .

[48]  L. C. Abreu,et al.  Composición química de tres maderas en la provincia de Pinar del Río, Cuba a tres alturas del fuste comercial.Parte Nº 2: Eucalyptus pellita F. Muell , 2004 .

[49]  P. Nobel,et al.  Cacti : biology and uses , 2002 .

[50]  O. Faix,et al.  Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy , 1991 .

[51]  Shiro Saka,et al.  The Distribution of Lignin in White Birch Wood as Determined by Bromination with TEM-EDXA , 1988 .

[52]  S. Saka,et al.  CHAPTER 3 – Localization of Lignins in Wood Cell Walls , 1985 .

[53]  Kyosti V. Sarkanen,et al.  Lignins : occurrence, formation, structure and reactions , 1971 .

[54]  D. Goring,et al.  The Location of Guaiacyl and Syringyl Lignins in Birch Xylem Tissue , 1970 .

[55]  A. J. Panshin,et al.  Textbook of Wood Technology , 1964 .