Single-step formation of ZnO/ZnWO(x) bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states.

A spontaneously formed ZnO/ZnWOx bilayer resistive memory via an interfacial engineering by one-step sputtering process with controllable high resistance states was demonstrated. The detailed formation mechanism and microstructure of the ZnWOx layer was explored by X-ray photoemission spectroscopy (XPS) and transmission electron microscope in detail. The reduced trapping depths from 0.46 to 0.29 eV were found after formation of ZnWOx layer, resulting in an asymmetric I-V behavior. In particular, the reduction of compliance current significantly reduces the switching current to reach the stable operation of device, enabling less energy consumption. Furthermore, we demonstrated an excellent performance of the complementary resistive switching (CRS) based on the ZnO/ZnWOx bilayer structure with DC endurance >200 cycles for a possible application in three-dimensional multilayer stacking.

[1]  Jean-Pierre Locquet,et al.  Epitaxial growth of Dy2O3 films on SrTiO3(001) substrates by molecular beam epitaxy , 2011 .

[2]  Boris Maiorov,et al.  Y2/3Sm1/3Ba2Cu3O7‐x被覆導体における希土類イオンサイズ効果および増強された臨界電流密度 , 2005 .

[3]  J SmithDavid,et al.  超高真空透過電子顕微鏡法を用いたSi(110)上におけるCoSi2ナノワイヤーのエンドタキシャル成長のその場観測 , 2011 .

[4]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[5]  Aleksandra B. Djurišić,et al.  ZnO nanostructures: growth, properties and applications , 2012 .

[6]  J. Swerts,et al.  Magnetization reversal in patterned ferromagnetic and exchange-biased nanostructures studied by neutron reflectivity (invited) , 2005 .

[7]  Jun Yeong Seok,et al.  Collective Motion of Conducting Filaments in Pt/n‐Type TiO2/p‐Type NiO/Pt Stacked Resistance Switching Memory , 2011 .

[8]  Erik P. A. M. Bakkers,et al.  Position-controlled [100] InP nanowire arrays , 2012 .

[9]  D. Wolansky,et al.  On the role of Ti adlayers for resistive switching in HfO2-based metal-insulator-metal structures: Top versus bottom electrode integration , 2011 .

[10]  Chengliang Sun,et al.  Magnetoelectric coupling in CoFe₂O₄/SrRuO₃/Pb(Zr[sub 0.52]Ti[sub 0.48])O₃ heteroepitaxial thin film structure , 2008 .

[11]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[12]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[13]  Hans Peter Herzig,et al.  Characterization of buried photonic crystal waveguides and microcavities fabricated by deep ultraviolet lithography , 2005 .

[14]  He X-J,et al.  屈折率センシング応用に対する平面状相補的メタマテリアルにおける電磁誘導透明性 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2013 .

[15]  H. Nicolai,et al.  Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime , 2011 .

[16]  Sung-Yool Choi,et al.  Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices , 2010 .

[17]  T. Chin,et al.  Forming-free bipolar memristive switching of ZnO films deposited by cyclic-voltammetry , 2013 .

[18]  Kawal Sawhney,et al.  A planar refractive x-ray lens made of nanocrystalline diamond , 2010 .

[19]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[20]  R. J. Luyken,et al.  Concepts for hybrid CMOS-molecular non-volatile memories , 2003 .

[21]  C. Selcuk,et al.  Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps , 2005 .

[22]  H. Hwang,et al.  Bipolar resistance switching in the Pt/WOx/W nonvolatile memory devices , 2011 .

[23]  Renaud A. L. Vallée,et al.  In situ tuning the optical properties of a cavity by wrinkling , 2010 .

[24]  Junhua Wang,et al.  An advanced double-layer combined windings transverse flux system for thin strip induction heating , 2011 .

[25]  M. Rosmeulen,et al.  VARIOT: a novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices , 2003, IEEE Electron Device Letters.

[26]  Y. Chueh,et al.  Polarity of Bipolar Resistive Switching Characteristics in ZnO Memory Films , 2011 .

[27]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[28]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[29]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[30]  Sun Wenxiang,et al.  Resistive Switching Characteristics of Zinc Oxide Resistive RAM Doped with Nickel , 2013 .

[31]  Yoshiyuki Yamashita,et al.  Hard x-ray photoelectron spectroscopy of buried Heusler compounds , 2009 .

[32]  W. H. Rudderow Pressure Measurements in a Magnetically Driven Shock Tube , 1968 .

[33]  Yu-Lun Chueh,et al.  ZnO1-x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. , 2012, ACS nano.

[34]  Y. Chueh,et al.  Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. , 2013, ACS applied materials & interfaces.

[35]  M. Kozicki,et al.  Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices , 2010 .