Finite-key analysis of a practical decoy-state high-dimensional quantum key distribution

Compared with two-level quantum key distribution (QKD), highdimensional QKD enable two distant parties to share a secret key at a higher rate. We provide a finite-key security analysis for the recently proposed practical highdimensional decoy-state QKD protocol based on time-energy entanglement. We employ two methods to estimate the statistical fluctuation of the postselection probability and give a tighter bound on the secure-key capacity. By numerical evaluation, we show the finite-key effect on the secure-key capacity in different conditions. Moreover, our approach could be used to optimize parameters in practical implementations of highdimensional QKD.

[1]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[2]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[3]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[4]  Xiongfeng Ma,et al.  Practical issues in quantum-key-distribution postprocessing , 2009, 0910.0312.

[5]  Ian A Walmsley,et al.  Secure quantum key distribution using continuous variables of single photons. , 2007, Physical review letters.

[6]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[7]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[8]  Hermann Kampermann,et al.  Secret key rates for coherent attacks , 2012, 1207.0085.

[9]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[10]  Dirk Englund,et al.  Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. , 2013, Physical review letters.

[11]  Jeffrey H. Shapiro,et al.  Finite-key analysis of high-dimensional time–energy entanglement-based quantum key distribution , 2013, Quantum Inf. Process..

[12]  Jeffrey H. Shapiro,et al.  High-dimensional quantum key distribution using dispersive optics , 2012, Physical Review A.

[13]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[14]  Wei Cui,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2013, Nature Communications.

[15]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[16]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[17]  Bing Qi Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation. , 2006, Optics letters.

[18]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[19]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[20]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[21]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[22]  V. Scarani,et al.  Two independent photon pairs versus four-photon entangled states in parametric down conversion , 2003, quant-ph/0310167.

[23]  P. Grangier,et al.  Finite-size analysis of a continuous-variable quantum key distribution , 2010, 1005.0339.

[24]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[25]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[26]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[27]  J. Mower,et al.  Dense Wavelength Division Multiplexed Quantum Key Distribution Using Entangled Photons , 2011, 1110.4867.

[28]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[29]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[30]  Jeffrey H. Shapiro,et al.  Entanglement-based quantum communication secured by nonlocal dispersion cancellation , 2014, Physical Review A.

[31]  Mario Berta,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2012 .

[32]  M. Hayashi,et al.  Concise and tight security analysis of the Bennett–Brassard 1984 protocol with finite key lengths , 2011, 1107.0589.

[33]  Renato Renner,et al.  Security of continuous-variable quantum key distribution against general attacks. , 2012, Physical review letters.

[34]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[35]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.

[36]  R. Werner,et al.  Erratum: Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security Against Coherent Attacks [Phys. Rev. Lett. 109, 100502 (2012)] , 2014 .

[37]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[38]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[39]  Irfan Khan,et al.  Experimental demonstration of high two-photon time-energy entanglement , 2006 .

[40]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[41]  Richard J. Hughes,et al.  Security of decoy-state protocols for general photon-number-splitting attacks , 2013, 1304.5161.

[42]  G. A. Diamandis,et al.  On the stability of the classical vacua in a minimal SU(5) five-dimensional supergravity model , 2001, hep-th/0111046.

[43]  Jeffrey H. Shapiro,et al.  Practical high-dimensional quantum key distribution with decoy states , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[44]  Brian J. Smith,et al.  Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. , 2013, Optics express.

[45]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[46]  Yang Wang,et al.  Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks , 2014, 1406.0387.

[47]  Yang Wang,et al.  Finite-key analysis for one-sided device-independent quantum key distribution , 2013 .