Analyzing single-molecule time series via nonparametric Bayesian inference.

The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data.

[1]  Ophir Flomenbom,et al.  Utilizing the information content in two-state trajectories. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Blei Bayesian Nonparametrics I , 2016 .

[3]  D. H. Cox,et al.  Allosteric Gating of a Large Conductance Ca-activated K Ϩ Channel , 2022 .

[4]  Rafael A Rosales,et al.  MCMC for hidden Markov models incorporating aggregation of states and filtering , 2004, Bulletin of mathematical biology.

[5]  Michael I. Jordan,et al.  A Sticky HDP-HMM With Application to Speaker Diarization , 2009, 0905.2592.

[6]  F. Conti,et al.  Non‐stationary fluctuations of the potassium conductance at the node of ranvier of the frog. , 1984, Journal of Physiology.

[7]  D Rolles,et al.  Time-resolved measurement of interatomic coulombic decay in Ne2. , 2013, Physical review letters.

[8]  Michael I. Jordan,et al.  Learning Multiscale Representations of Natural Scenes Using Dirichlet Processes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  A. Auerbach,et al.  Maximum likelihood estimation of aggregated Markov processes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  Frederick Sachs,et al.  Maximum likelihood estimation of ion channel kinetics from macroscopic currents. , 2005, Biophysical journal.

[11]  Shimon Weiss,et al.  Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy , 2000, Nature Structural Biology.

[12]  Keegan E. Hines,et al.  A primer on Bayesian inference for biophysical systems. , 2015, Biophysical journal.

[13]  Michael I. Jordan,et al.  Variational methods for the Dirichlet process , 2004, ICML.

[14]  Edmund J Crampin,et al.  MCMC estimation of Markov models for ion channels. , 2011, Biophysical journal.

[15]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[16]  R Horn,et al.  Estimating kinetic constants from single channel data. , 1983, Biophysical journal.

[17]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[18]  J. Pearson,et al.  Using independent open-to-closed transitions to simplify aggregated Markov models of ion channel gating kinetics. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Keegan E. Hines,et al.  Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach , 2014, The Journal of general physiology.

[20]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[21]  T. Rothenberg Identification in Parametric Models , 1971 .

[22]  Lawrence R. Rabiner,et al.  A tutorial on Hidden Markov Models , 1986 .

[23]  R. Aldrich,et al.  Complex voltage-dependent behavior of single unliganded calcium-sensitive potassium channels. , 2000, Biophysical journal.

[24]  Yee Whye Teh,et al.  Beam sampling for the infinite hidden Markov model , 2008, ICML '08.

[25]  Model selection in non-nested hidden Markov models for ion channel gating. , 2001, Journal of theoretical biology.

[26]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[27]  D. Chetkovich,et al.  Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels , 2012, Proceedings of the National Academy of Sciences.

[28]  P. Kienker Equivalence of aggregated Markov models of ion-channel gating , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[29]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[30]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[31]  The Akaike information criterion (AIC) is not a sufficient condition to determine the number of ion channel states from single channel recordings , 1990, Synapse.

[32]  F J Sigworth,et al.  Covariance of nonstationary sodium current fluctuations at the node of Ranvier. , 1981, Biophysical journal.

[33]  Rafael A Rosales,et al.  Allosteric control of gating mechanisms revisited: the large conductance Ca2+-activated K+ channel. , 2009, Biophysical journal.

[34]  M M Millonas,et al.  Nonequilibrium response spectroscopy of voltage-sensitive ion channel gating. , 1998, Biophysical journal.

[35]  Edmund J Crampin,et al.  MCMC can detect nonidentifiable models. , 2012, Biophysical journal.

[36]  R. Levy,et al.  Direct Determination of Kinetic Rates from Single-Molecule Photon Arrival Trajectories Using Hidden Markov Models. , 2003, The journal of physical chemistry. A.

[37]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[38]  Tamiki Komatsuzaki,et al.  Aggregated markov model using time series of single molecule dwell times with minimum excessive information. , 2013, Physical review letters.

[39]  R Horn,et al.  Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. , 1987, Biophysical journal.

[40]  Chris H Wiggins,et al.  Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. , 2009, Biophysical journal.

[41]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[42]  Christy F Landes,et al.  Denoising single-molecule FRET trajectories with wavelets and Bayesian inference. , 2010, Biophysical journal.

[43]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[44]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[45]  S. Lowen The Biophysical Journal , 1960, Nature.

[46]  Richard W. Aldrich,et al.  Coupling between Voltage Sensor Activation, Ca2+ Binding and Channel Opening in Large Conductance (BK) Potassium Channels , 2002, The Journal of general physiology.

[47]  A. Hawkes,et al.  On the stochastic properties of single ion channels , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  László Csanády,et al.  Statistical evaluation of ion-channel gating models based on distributions of log-likelihood ratios. , 2006, Biophysical journal.

[49]  S. Ramaswamy,et al.  Role of Conformational Dynamics in α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid (AMPA) Receptor Partial Agonism* , 2012, The Journal of Biological Chemistry.

[50]  Frank D. Wood,et al.  Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data , 2013, ICML.

[51]  Chong Wang,et al.  Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.

[52]  K. Magleby,et al.  Voltage and Ca2+ Activation of Single Large-Conductance Ca2+-Activated K+ Channels Described by a Two-Tiered Allosteric Gating Mechanism , 2000, The Journal of general physiology.

[53]  F G Ball,et al.  Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[54]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[55]  F. Sigworth,et al.  Data transformations for improved display and fitting of single-channel dwell time histograms. , 1987, Biophysical journal.

[56]  Jim Pitman,et al.  Poisson–Dirichlet and GEM Invariant Distributions for Split-and-Merge Transformations of an Interval Partition , 2002, Combinatorics, Probability and Computing.

[57]  K. Magleby,et al.  Exponential sum-fitting of dwell-time distributions without specifying starting parameters. , 2013, Biophysical journal.

[58]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[59]  S. L. Scott Bayesian Methods for Hidden Markov Models , 2002 .