A Decomposition-Based Approach for the Multiperiod Multiproduct Distribution Planning Problem

We address the most general case of multiperiod, multiproduct network planning problems, where we allow spoilage on arcs and storage at nodes. In our models, all network parameters change over time and products. The minimum-cost flow problem in the discrete-time model with varying network parameters is investigated when we allow storage and/or spoilage, and some reformulation techniques employing polyhedrals are developed to obtain optimal solutions for a predefined horizon. Our methods rely on appropriate definitions of polyhedrals and matrices that lead to LP problems comprising a set of sparse subproblems with special structures. Knowing that computational expenses of solving such a large-scale planning problem can be decreased by using decomposition techniques, the special structure of polyhedrals is utilized to develop algorithmic approaches based on decomposition techniques to handle the global problem aiming to save computational resources.

[1]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[2]  Said Salhi,et al.  An Efficient Hybrid Genetic Algorithm for the MultiProduct Multi Period Inventory Routing Problem , 2011 .

[3]  Warren B. Powell,et al.  Multicommodity network flows: The impact of formulation on decomposition , 1993, Math. Program..

[4]  Peter L. Jackson,et al.  Revised dantzig-wolfe decomposition for staircase-structured linear programs , 1987, Math. Program..

[5]  Ignacio E. Grossmann,et al.  Temporal and spatial Lagrangean decompositions in multi-site, multi-period production planning problems with sequence-dependent changeovers , 2011, Comput. Chem. Eng..

[6]  W. A. Poe,et al.  Handbook of Natural Gas Transmission and Processing , 2006 .

[7]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[8]  Martin Skutella,et al.  Generalized Maximum Flows over Time , 2011, WAOA.

[9]  Michael C. Ferris,et al.  Slice models in general purpose modeling systems: An application to DEA , 2002, Optim. Methods Softw..

[10]  Leon S. Lasdon,et al.  A generalized upper bounding algorithm for multicommodity network flow problems , 1971, Networks.

[11]  David P. Rutenberg,et al.  Generalized Networks, Generalized Upper Bounding and Decomposition of the Convex Simplex Method , 1970 .

[12]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[13]  Ignacio E. Grossmann,et al.  New General Continuous-Time State−Task Network Formulation for Short-Term Scheduling of Multipurpose Batch Plants , 2003 .

[14]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[15]  Meta M. Voelker OPTIMIZATION OF SLICE MODELS , 2002 .

[16]  José M. Pinto,et al.  Lagrangean-based techniques for the supply chain management of flexible process networks , 2008, Comput. Chem. Eng..

[17]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[18]  Hassan Salehi Fathabadi,et al.  Minimum Cost Flow Problem on Dynamic Multi Generative Network flows , 2010, Algorithmic Oper. Res..

[19]  Bevan K. Youse,et al.  Introduction to real analysis , 1972 .

[20]  Dmitrii Lozovanu,et al.  Optimization and Multiobjective Control of Time-Discrete Systems: Dynamic Networks and Multilayered Structures , 2009 .

[21]  Xiaoqiang Cai,et al.  Time-varying network optimization , 2007 .

[22]  Michael C. Ferris,et al.  Partitioning mathematical programs for parallel solution , 1998, Math. Program..

[23]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[24]  Kellen Petersen August Real Analysis , 2009 .

[25]  Seyed Ahmad Hosseini,et al.  An introduction to dynamic generative networks: Minimum cost flow , 2011 .

[26]  Hlynur Stefansson,et al.  Production , Manufacturing and Logistics Discrete and continuous time representations and mathematical models for large production scheduling problems : A case study from the pharmaceutical industry , 2011 .

[27]  Seyed Ahmad Hosseini A Model-Based Approach and Analysis for Multi-Period Networks , 2013, J. Optim. Theory Appl..

[28]  I. Grossmann,et al.  Temporal Decomposition Scheme for Nonlinear Multisite Production Planning and Distribution Models , 2003 .

[29]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[30]  P. Kettler,et al.  Rearranging Matrices to Block-Angular form for Decomposition (And Other) Algorithms , 1971 .

[31]  Martin Skutella,et al.  Maximum Multicommodity Flows over Time without Intermediate Storage , 2012, ESA.

[32]  G. Dantzig,et al.  THE DECOMPOSITION ALGORITHM FOR LINEAR PROGRAMS , 1961 .

[33]  Éva Tardos,et al.  Generalized maximum flow algorithms , 1999 .

[34]  Ignacio E. Grossmann,et al.  Time representations and mathematical models for process scheduling problems , 2011, Comput. Chem. Eng..

[35]  Hanif D. Sherali,et al.  Linear Programming and Network Flows: Bazaraa/Linear , 2009 .

[36]  D. R. Fulkerson,et al.  Constructing Maximal Dynamic Flows from Static Flows , 1958 .

[37]  S. M. S. Neiro,et al.  Langrangean decomposition applied to multiperiod planning of petroleum refineries under uncertainty , 2006 .

[38]  Richard Johnsonbaugh,et al.  Foundations of mathematical analysis , 1981 .

[39]  K. Wong,et al.  Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[40]  Seyed Ahmad Hosseini,et al.  Determining the Optimal Flows in Zero-Time Dynamic Networks , 2012, J. Math. Model. Algorithms.

[41]  Carlos Eduardo Ferreira,et al.  Decomposing Matrices into Blocks , 1998, SIAM J. Optim..

[42]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[43]  Bruce Hoppe,et al.  Efficient Dynamic Network Flow Algorithms , 1995 .

[44]  Ignacio E. Grossmann,et al.  Computers and Chemical Engineering , 2014 .

[45]  Jeffery L. Kennington,et al.  Generalized Networks , 2009, Encyclopedia of Optimization.

[46]  K. I. M. McKinnon,et al.  Hyper-Sparsity in the Revised Simplex Method and How to Exploit it , 2005, Comput. Optim. Appl..

[47]  R. Sargent,et al.  A general algorithm for short-term scheduling of batch operations */I , 1993 .

[48]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .