Molecular characterization of a disease associated conformational epitope on GAD65 recognised by a human monoclonal antibody b96.11.

[1]  M. Dalakas,et al.  Analysis of GAD65 Autoantibodies in Stiff-Person Syndrome Patients1 , 2005, The Journal of Immunology.

[2]  Å. Lernmark,et al.  Immunomodulation with human recombinant autoantigens. , 2005, Trends in immunology.

[3]  C. Greenbaum,et al.  Autoimmunity and clinical course in children with type 1, type 2, and type 1.5 diabetes. , 2005, Journal of autoimmunity.

[4]  O. Schueler‐Furman,et al.  Progress in Modeling of Protein Structures and Interactions , 2005, Science.

[5]  Stephen R Comeau,et al.  Performance of the first protein docking server ClusPro in CAPRI rounds 3–5 , 2005, Proteins.

[6]  ANDREAS SCHREIBER,et al.  3D‐Epitope‐Explorer (3DEX): Localization of conformational epitopes within three‐dimensional structures of proteins , 2005, J. Comput. Chem..

[7]  J. Banga,et al.  Dynamic changes of GAD65 autoantibody epitope specificities in individuals at risk of developing type 1 diabetes , 2005, Diabetologia.

[8]  G. Capitani,et al.  Structural model of human GAD65: Prediction and interpretation of biochemical and immunogenic features , 2005, Proteins.

[9]  T. Blundell,et al.  Analysis of the thyrotropin receptor-thyrotropin interaction by comparative modeling. , 2004, Thyroid : official journal of the American Thyroid Association.

[10]  C. Hampe,et al.  Epitope analysis of GAD65Ab using fusion proteins and rFab. , 2004, Journal of immunological methods.

[11]  Sandor Vajda,et al.  ClusPro: a fully automated algorithm for protein-protein docking , 2004, Nucleic Acids Res..

[12]  Frank Alber,et al.  A structural perspective on protein-protein interactions. , 2004, Current opinion in structural biology.

[13]  M. Knip,et al.  GAD65 antibody isotypes and epitope recognition during the prediabetic process in siblings of children with type I diabetes , 2004, Clinical and experimental immunology.

[14]  S. Vajda,et al.  Protein-protein docking: is the glass half-full or half-empty? , 2004, Trends in biotechnology.

[15]  M. Knip,et al.  Antibodies to GAD65 Epitopes at Diagnosis and Over the First 10 years of Clinical Type 1 Diabetes Mellitus , 2004, Scandinavian journal of immunology.

[16]  I. Kockum,et al.  Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes-specific GAD65Abs. , 2003, Diabetes.

[17]  M. Rowley,et al.  A Diabetes‐Related Epitope of GAD65 , 2003 .

[18]  Z. Weng,et al.  A novel shape complementarity scoring function for protein‐protein docking , 2003, Proteins.

[19]  Andrea Bernini,et al.  Biochemical filtering of a protein-protein docking simulation identifies the structure of a complex between a recombinant antibody fragment and alpha-bungarotoxin. , 2003, The Biochemical journal.

[20]  Ilya A Vakser,et al.  Docking of protein models , 2002, Protein science : a publication of the Protein Society.

[21]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[22]  Enrique Vargas-Madrazo,et al.  Modifications to canonical structure sequence patterns: Analysis for L1 and L3 , 2002, Proteins.

[23]  S. Baekkeskov,et al.  Isolation and Characterization of Human Monoclonal Autoantibodies to Glutamic Acid Decarboxylase , 2002, Autoimmunity.

[24]  O. El-Kabbani,et al.  Modelling studies of the active site of human sorbitol dehydrogenase: an approach to structure-based inhibitor design of the enzyme. , 2001, Bioorganic & medicinal chemistry letters.

[25]  J. Whisstock,et al.  Conformational Epitopes on the Diabetes Autoantigen GAD65 Identified by Peptide Phage Display and Molecular Modeling , 2000, The Journal of Immunology.

[26]  S. Zinn-Justin,et al.  Molecular and Structural Basis of the Specificity of a Neutralizing Acetylcholine Receptor-mimicking Antibody, Using Combined Mutational and Molecular Modeling Analyses* , 2000, The Journal of Biological Chemistry.

[27]  O. El-Kabbani,et al.  Modelling studies on the binding of substrate and inhibitor to the active site of human sorbitol dehydrogenase. , 2000, Bioorganic & medicinal chemistry letters.

[28]  A Tramontano,et al.  Antibody modeling: implications for engineering and design. , 2000, Methods.

[29]  E. Bonifacio,et al.  Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes. , 2000, Diabetes.

[30]  J. Whisstock,et al.  Multiple alignment and sorting of peptides derived from phage-displayed random peptide libraries with polyclonal sera allows discrimination of relevant phagotopes. , 1999, Molecular immunology.

[31]  F. Cohen,et al.  High-resolution autoreactive epitope mapping and structural modeling of the 65 kDa form of human glutamic acid decarboxylase. , 1999, Journal of molecular biology.

[32]  J. Robinson,et al.  On the importance of being aromatic at an antibody-protein antigen interface: mutagenesis of the extracellular interferon gamma receptor and recognition by the neutralizing antibody A6. , 1999, Journal of molecular biology.

[33]  D. Baker,et al.  Clustering of low-energy conformations near the native structures of small proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  David L. Martin,et al.  Motifs and structural fold of the cofactor binding site of human glutamate decarboxylase , 1998, Protein science : a publication of the Protein Society.

[35]  A Tramontano,et al.  Conformations of the third hypervariable region in the VH domain of immunoglobulins. , 1998, Journal of molecular biology.

[36]  A. Lesk,et al.  Standard conformations for the canonical structures of immunoglobulins. , 1997, Journal of molecular biology.

[37]  A Tramontano,et al.  Antibody structure, prediction and redesign. , 1997, Biophysical chemistry.

[38]  M. Rowley,et al.  Evaluation of ICA512As in Combination With Other Islet Cell Autoantibodies at the Onset of IDDM , 1997, Diabetes Care.

[39]  W. Scherbaum,et al.  Human B cells secreting immunoglobulin G to glutamic acid decarboxylase-65 from a nondiabetic patient with multiple autoantibodies and Graves' disease: a comparison with those present in type 1 diabetes. , 1997, The Journal of clinical endocrinology and metabolism.

[40]  Å. Lernmark Glutamic Acid Decarboxylase – Gene to Antigen to Disease , 1996, Journal of internal medicine.

[41]  Å. Lernmark,et al.  Diagnostic sensitivity of immunodominant epitopes of glutamic acid decarboxylase (GAD65) autoantibodies in childhood IDDM , 1996, Diabetologia.

[42]  H. Wolfson,et al.  Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences. , 1996, Critical reviews in biochemistry and molecular biology.

[43]  M. Atkinson,et al.  Glutamic acid decarboxylase autoantibodies in stiff-man syndrome and insulin-dependent diabetes mellitus exhibit similarities and differences in epitope recognition. , 1996, Journal of immunology.

[44]  J. C. Almagro,et al.  Canonical structure repertoire of the antigen-binding site of immunoglobulins suggests strong geometrical restrictions associated to the mechanism of immune recognition. , 1995, Journal of molecular biology.

[45]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[46]  S. Baekkeskov,et al.  Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus , 1994, The Journal of experimental medicine.

[47]  C. Mcphalen,et al.  X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. , 1993, Journal of molecular biology.

[48]  S. Baekkeskov,et al.  Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-terminal domains of the smaller form of glutamate decarboxylase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. Groop,et al.  Antibodies to Glutamic Acid Decarboxylase Reveal Latent Autoimmune Diabetes Mellitus in Adults With a Non—Insulin-Dependent Onset of Disease , 1993, Diabetes.

[50]  L. Jin,et al.  High resolution functional analysis of antibody-antigen interactions. , 1992, Journal of molecular biology.

[51]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.

[52]  Sandor Vajda,et al.  ClusPro: an automated docking and discrimination method for the prediction of protein complexes , 2004, Bioinform..

[53]  M. Rowley,et al.  Phage display for epitope determination: a paradigm for identifying receptor-ligand interactions. , 2004, Biotechnology annual review.

[54]  A. Kortt,et al.  Effects of substitutions in the binding surface of an antibody on antigen affinity. , 1998, Protein engineering.

[55]  M. Rowley,et al.  Autoantigenic reactivity of diabetes sera with a hybrid glutamic acid decarboxylase GAD67-65 molecule GAD67(1-101)/GAD65(96-585). , 1998, Autoimmunity.

[56]  C. H. Chen,et al.  Structural characteristics of brain glutamate decarboxylase in relation to its interaction and activation. , 1998, Archives of biochemistry and biophysics.