Generating W states with braiding operators

Braiding operators can be used to create entangled states out of product states, thus establishing a correspondence between topological and quantum entanglement. This is well-known for maximally entangled Bell and GHZ states and their equivalent states under Stochastic Local Operations and Classical Communication, but so far a similar result for W states was missing. Here we use generators of extraspecial 2-groups to obtain the W state in a four-qubit space and partition algebras to generate the W state in a three-qubit space. We also present a unitary generalized Yang-Baxter operator that embeds the W$_n$ state in a $(2n-1)$-qubit space.

[1]  Jennifer Franko,et al.  Extraspecial 2-groups and images of braid group representations , 2005 .

[2]  A Sudbery,et al.  Local symmetry properties of pure three-qubit states , 2000 .

[3]  Gorjan Alagic,et al.  Yang–Baxter operators need quantum entanglement to distinguish knots , 2015, 1507.05979.

[4]  C. Galindo,et al.  Generalized and Quasi-Localizations of Braid Group Representations , 2011, 1105.5048.

[5]  George Rajna,et al.  Universal Quantum Gate , 2016 .

[6]  A. Kitaev,et al.  Solutions to generalized Yang-Baxter equations via ribbon fusion categories , 2012, 1203.1063.

[7]  Fumihiko Sugino,et al.  Quantum entanglement, supersymmetry, and the generalized Yang-Baxter equation , 2020, Quantum Inf. Comput..

[8]  Louis H. Kauffman,et al.  Quantum entanglement and topological entanglement , 2002 .

[9]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[10]  Louis H. Kauffman,et al.  Topological aspects of quantum entanglement , 2016, Quantum Inf. Process..

[11]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[12]  Abner Shimony,et al.  Potentiality, entanglement and passion-at-a-distance , 1997 .

[13]  D. Gross,et al.  Multi-partite entanglement , 2016, 1612.02437.

[14]  Gonccalo M. Quinta,et al.  Classifying quantum entanglement through topological links , 2018, 1803.08935.

[15]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[16]  Louis H. Kauffman,et al.  Universal Quantum Gate, Yang-Baxterization and Hamiltonian , 2004, quant-ph/0412095.

[17]  A. Sudbery On local invariants of pure three-qubit states , 2000, quant-ph/0001116.

[18]  A. Sugita Borromean Entanglement Revisited , 2007, 0704.1712.

[20]  Invariants of links from the generalized Yang-Baxter equation , 2012, 1202.3945.

[21]  Rebecca Chen,et al.  Generalized Yang-Baxter Equations and Braiding Quantum Gates , 2011, 1108.5215.

[22]  Eric C. Rowell,et al.  Localization of Unitary Braid Group Representations , 2010, 1009.0241.

[23]  Louis H. Kauffman,et al.  Braiding operators are universal quantum gates , 2004, quant-ph/0401090.

[24]  Yong Zhang,et al.  Extraspecial two-Groups, generalized Yang-Baxter equations and braiding quantum gates , 2007, Quantum Inf. Comput..

[25]  P. K. Aravind Borromean Entanglement of the GHZ State , 1997 .

[26]  Tom Halverson,et al.  Partition algebras , 2004, Eur. J. Comb..