Generating W states with braiding operators
暂无分享,去创建一个
[1] Jennifer Franko,et al. Extraspecial 2-groups and images of braid group representations , 2005 .
[2] A Sudbery,et al. Local symmetry properties of pure three-qubit states , 2000 .
[3] Gorjan Alagic,et al. Yang–Baxter operators need quantum entanglement to distinguish knots , 2015, 1507.05979.
[4] C. Galindo,et al. Generalized and Quasi-Localizations of Braid Group Representations , 2011, 1105.5048.
[5] George Rajna,et al. Universal Quantum Gate , 2016 .
[6] A. Kitaev,et al. Solutions to generalized Yang-Baxter equations via ribbon fusion categories , 2012, 1203.1063.
[7] Fumihiko Sugino,et al. Quantum entanglement, supersymmetry, and the generalized Yang-Baxter equation , 2020, Quantum Inf. Comput..
[8] Louis H. Kauffman,et al. Quantum entanglement and topological entanglement , 2002 .
[9] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[10] Louis H. Kauffman,et al. Topological aspects of quantum entanglement , 2016, Quantum Inf. Process..
[11] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[12] Abner Shimony,et al. Potentiality, entanglement and passion-at-a-distance , 1997 .
[13] D. Gross,et al. Multi-partite entanglement , 2016, 1612.02437.
[14] Gonccalo M. Quinta,et al. Classifying quantum entanglement through topological links , 2018, 1803.08935.
[15] V. Turaev. The Yang-Baxter equation and invariants of links , 1988 .
[16] Louis H. Kauffman,et al. Universal Quantum Gate, Yang-Baxterization and Hamiltonian , 2004, quant-ph/0412095.
[17] A. Sudbery. On local invariants of pure three-qubit states , 2000, quant-ph/0001116.
[18] A. Sugita. Borromean Entanglement Revisited , 2007, 0704.1712.
[20] Invariants of links from the generalized Yang-Baxter equation , 2012, 1202.3945.
[21] Rebecca Chen,et al. Generalized Yang-Baxter Equations and Braiding Quantum Gates , 2011, 1108.5215.
[22] Eric C. Rowell,et al. Localization of Unitary Braid Group Representations , 2010, 1009.0241.
[23] Louis H. Kauffman,et al. Braiding operators are universal quantum gates , 2004, quant-ph/0401090.
[24] Yong Zhang,et al. Extraspecial two-Groups, generalized Yang-Baxter equations and braiding quantum gates , 2007, Quantum Inf. Comput..
[25] P. K. Aravind. Borromean Entanglement of the GHZ State , 1997 .
[26] Tom Halverson,et al. Partition algebras , 2004, Eur. J. Comb..