Improved robustness for nearly-incompressible large deformation meshfree simulations on Delaunay tessellations

Abstract A displacement-based Galerkin meshfree method for large deformation analysis of nearly-incompressible elastic solids is presented. Nodal discretization of the domain is defined by a Delaunay tessellation (three-node triangles and four-node tetrahedra), which is used to form the meshfree basis functions and to numerically integrate the weak form integrals. In the proposed approach for nearly-incompressible solids, a volume-averaged nodal projection operator is constructed to average the dilatational constraint at a node from the displacement field of surrounding nodes. The nodal dilatational constraint is then projected onto the linear approximation space. The displacement field is constructed on the linear space and enriched with bubble-like meshfree basis functions for stability. The new procedure leads to a displacement-based formulation that is similar to F -bar methodologies in finite elements and isogeometric analysis. We adopt maximum-entropy meshfree basis functions, and the performance of the meshfree method is demonstrated on benchmark problems using structured and unstructured background meshes in two and three dimensions. The nonlinear simulations reveal that the proposed methodology provides improved robustness for nearly-incompressible large deformation analysis on Delaunay meshes.

[1]  Michael A. Puso,et al.  Meshfree and finite element nodal integration methods , 2008 .

[2]  Petr Krysl,et al.  Assumed strain nodally integrated hexahedral finite element formulation for elastoplastic applications , 2014 .

[3]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[4]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[5]  Alessandro Reali,et al.  An analysis of some mixed-enhanced finite element for plane linear elasticity , 2005 .

[6]  C. A. Saracibar,et al.  Mixed linear/linear simplicial elements for incompressible elasticity and plasticity , 2003 .

[7]  Jiun-Shyan Chen,et al.  An arbitrary order variationally consistent integration for Galerkin meshfree methods , 2013 .

[8]  Michael A. Puso,et al.  Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity , 2009 .

[9]  R. Wright,et al.  Overview and construction of meshfree basis functions: from moving least squares to entropy approximants , 2007 .

[10]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[11]  M. Koishi,et al.  A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers , 2012 .

[12]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[13]  Oubay Hassan,et al.  An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications , 2001 .

[14]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[15]  F. Auricchio,et al.  On the enhanced strain technique for elasticity problems , 2003 .

[16]  O. C. Zienkiewicz,et al.  Triangles and tetrahedra in explicit dynamic codes for solids , 1998 .

[17]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[18]  K. Bathe,et al.  The method of finite spheres with improved numerical integration , 2001 .

[19]  E. Oñate,et al.  Finite calculus formulation for incompressible solids using linear triangles and tetrahedra , 2004 .

[20]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .

[21]  E. A. S. Neto,et al.  F‐bar‐based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking , 2005 .

[22]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[23]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[24]  Ted Belytschko,et al.  Second‐order accurate derivatives and integration schemes for meshfree methods , 2012 .

[25]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[26]  N. Sukumar,et al.  Derivatives of maximum‐entropy basis functions on the boundary: Theory and computations , 2013 .

[27]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[28]  Xikui Li,et al.  A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation , 2014 .

[29]  S. Reese,et al.  A new locking-free brick element technique for large deformation problems in elasticity ☆ , 2000 .

[30]  Petr Krysl,et al.  Locking‐free continuum displacement finite elements with nodal integration , 2008 .

[31]  Michael A. Puso,et al.  A stabilized nodally integrated tetrahedral , 2006 .

[32]  Robert L. Taylor,et al.  A mixed-enhanced formulation tetrahedral finite elements , 2000 .

[33]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[34]  C. T. Wu,et al.  Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids , 2011 .

[35]  M. Puso,et al.  A New Stabilized Nodal Integration Approach , 2007 .

[36]  T. Belytschko,et al.  Consistent element‐free Galerkin method , 2014 .

[37]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[38]  C. Cyron,et al.  Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions , 2015 .

[39]  Michael A. Puso,et al.  Maximum-entropy meshfree method for incompressible media problems , 2011 .

[40]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[41]  Ted Belytschko,et al.  Triangular composite finite elements , 2000 .

[42]  Petr Krysl,et al.  Assumed‐deformation gradient finite elements with nodal integration for nearly incompressible large deformation analysis , 2009 .

[43]  Ivo Babuška,et al.  Effect of numerical integration on meshless methods , 2009 .

[44]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[45]  Clark R. Dohrmann,et al.  Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes , 1999 .

[46]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[47]  E. A. Repetto,et al.  Tetrahedral composite finite elements , 2002 .

[48]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[49]  Peter Wriggers,et al.  A stabilization technique to avoid hourglassing in finite elasticity , 2000 .

[50]  Ivo Babuška,et al.  Quadrature for meshless methods , 2008 .

[51]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[52]  M. Koishi,et al.  Three‐dimensional meshfree‐enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites , 2012 .

[53]  Ellen Kuhl,et al.  Diamond elements: a finite element/discrete‐mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity , 2007, International Journal for Numerical Methods in Engineering.