Representations and cohomologies of regular Hom-pre-Lie algebras

In this paper, first we study dual representations and tensor representations of Hom-pre-Lie algebras. Then we develop the cohomology theory of regular Hom-pre-Lie algebras in terms of the cohomology theory of regular Hom-Lie algebras. As applications, we study linear deformations of regular Hom-pre-Lie algebras, which are characterized by the second cohomology groups of regular Hom-pre-Lie algebras with the coefficients in the regular representations. The notion of a Nijenhuis operator on a regular Hom-pre-Lie algebra is introduced which can generate a trivial linear deformation of a regular Hom-pre-Lie algebra. Finally, we introduce the notion of a Hessian structure on a regular Hom-pre-Lie algebra, which is a symmetric nondegenerate 2-cocycle with the coefficient in the trivial representation. We also introduce the notion of an [Formula: see text]-operator on a regular Hom-pre-Lie algebra, by which we give an equivalent characterization of a Hessian structure.

[1]  Qingcheng Zhang,et al.  Hom-Lie algebroids and hom-left-symmetric algebroids , 2017 .

[2]  Qinxiu Sun,et al.  On parakähler Hom-Lie algebras and Hom-left-symmetric bialgebras , 2017 .

[3]  Y. Sheng,et al.  Hom-Lie algebroids, Hom-Lie bialgebroids and Hom-Courant algebroids , 2016, 1605.04752.

[4]  Yunhe Sheng,et al.  Purely Hom-Lie bialgebras , 2016, 1605.00722.

[5]  Y. Sheng,et al.  Nijenhuis operators on $n$-Lie algebras , 2016, 1601.02356.

[6]  Quanqin Jin,et al.  Hom-structures on semi-simple Lie algebras , 2015 .

[7]  K. Lundengård,et al.  Brackets with (τ,σ)-derivations and (p,q)-deformations of Witt and Virasoro algebras , 2015 .

[8]  Y. Sheng,et al.  A new approach to hom-Lie bialgebras , 2013, 1304.1954.

[9]  C. Laurent-Gengoux,et al.  Hom-Lie algebroids , 2012, 1211.2263.

[10]  Yunhe Sheng,et al.  Hom-Lie 2-algebras☆ , 2011, 1110.3405.

[11]  Yunhe Sheng,et al.  Representations of Hom-Lie Algebras , 2010, 1005.0140.

[12]  Sergei Silvestrov,et al.  Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras , 2010 .

[13]  Donald Yau The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras , 2009, 0905.1890.

[14]  Donald Yau The Hom–Yang–Baxter equation, Hom–Lie algebras, and quasi-triangular bialgebras , 2009, 0903.0585.

[15]  Quanqin Jin,et al.  Hom-Lie algebra structures on semi-simple Lie algebras , 2008 .

[16]  S. Silvestrov,et al.  On Hom-algebra structures , 2006, math/0609501.

[17]  Sergei Silvestrov,et al.  Deformations of Lie Algebras using σ-Derivations , 2004, math/0408064.

[18]  Dietrich Burde,et al.  Left-symmetric algebras, or pre-Lie algebras in geometry and physics , 2005, math-ph/0509016.

[19]  S. Silvestrov,et al.  Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities , 2004, math/0408061.

[20]  Sergei Silvestrov,et al.  Quasi-Lie algebras , 2004 .

[21]  V. Kac,et al.  Field Algebras , 2002, math/0204282.

[22]  F. Chapoton,et al.  Pre-Lie algebras and the rooted trees operad , 2000, math/0002069.

[23]  A. Dzhumadil'daev Conomologies and deformations of right-symmetric algebras , 1998, math/9807065.

[24]  A. Lichnerowicz,et al.  On Lie groups with left-invariant symplectic or Kählerian structures , 1988 .