MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK

We model the time variability of ~9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results of Kelly et al. and Kozlowski et al. that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical description of quasar light curves by a characteristic timescale (τ) and an asymptotic rms variability on long timescales (SF∞). We searched for correlations between these two variability parameters and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF∞ to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF∞ and black hole mass with a power-law index of 0.18 ± 0.03, independent of the anti-correlation with luminosity. We find that τ increases with increasing wavelength with a power-law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with a power-law index of 0.21 ± 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image simulations.

[1]  M. R. S. Hawkins,et al.  Gravitational microlensing, quasar variability and missing matter , 1993, Nature.

[2]  Marat Gilfanov,et al.  Soft state of Cygnus X‐1: stable disc and unstable corona , 2001 .

[3]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[4]  William H. Press,et al.  The Time Delay of Gravitational Lens 0957+561. I. Methodology and Analysis of Optical Photometric Data , 1992 .

[5]  MULTIWAVELENGTH MONITORING OF THE DWARF SEYFERT 1 GALAXY NGC 4395. I. A REVERBERATION-BASED MEASUREMENT OF THE BLACK HOLE MASS , 2005, astro-ph/0506665.

[6]  Ian M. McHardy,et al.  On the use of structure functions to study blazar variability: caveats and problems , 2010, 1001.2045.

[7]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[8]  Spectral Variability of Quasars in the Sloan Digital Sky Survey. II: The C IV Line , 2005, astro-ph/0512313.

[9]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[10]  J. Brinkmann,et al.  Spectral Variability of Quasars in the Sloan Digital Sky Survey , 2004, astro-ph/0504309.

[11]  Allan Sandage,et al.  OPTICAL IDENTIFICATION OF 3C 48, 3C 196, AND 3C 286 WITH STELLAR OBJECTS , 1963 .

[12]  Zeljko Ivezic,et al.  Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry , 2007, astro-ph/0703157.

[13]  R. J. Brunner,et al.  Variable Faint Optical Sources Discovered by Comparing the POSS and SDSS Catalogs , 2004, astro-ph/0403319.

[14]  M. Hawkins Timescale of variation and the size of the accretion disc in active galactic nuclei , 2006, astro-ph/0611491.

[15]  W. Press,et al.  Interpolation, realization, and reconstruction of noisy, irregularly sampled data , 1992 .

[16]  Davis,et al.  Structure Function Analysis of Long-Term Quasar Variability , 2004, astro-ph/0411348.

[17]  R. Genzel,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). I. The Origin of the Far-Infrared Continuum of QSOs , 2006, astro-ph/0606158.

[18]  I. McHardy X-Ray Variability of AGN and Relationship to Galactic Black Hole Binary Systems , 2009, 0909.2579.

[19]  Arjun Dey,et al.  MID-INFRARED VARIABILITY FROM THE SPITZER DEEP WIDE-FIELD SURVEY , 2010, 1002.3365.

[20]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[21]  Paul S. Smith,et al.  Long-term optical variability properties of the Palomar–Green quasars , 1999 .

[22]  Richard G. McMahon,et al.  The variability of optically selected quasars , 1994 .

[23]  R. Maiolino,et al.  The Effect of Radiation Pressure on Virial Black Hole Mass Estimates and the Case of Narrow-Line Seyfert 1 Galaxies , 2008, 0802.2021.

[24]  I. M. McHardy,et al.  Measuring the broad-band power spectra of active galactic nuclei with RXTE , 2002 .

[25]  D. Berk,et al.  On the variability of quasars: a link between the Eddington ratio and optical variability? , 2007, 0711.4844.

[26]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[27]  R. Nichol,et al.  The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0310336.

[28]  vZeljko Ivezi'c,et al.  A UNIFIED CATALOG OF RADIO OBJECTS DETECTED BY NVSS, FIRST, WENSS, GB6, AND SDSS , 2008, 0806.0650.

[29]  Adam D. Myers,et al.  The 2dF-SDSS LRG and QSO Survey: the QSO luminosity function at 0.4 < z < 2.6 , 2009, 0907.2727.

[30]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[31]  A. J. Drake,et al.  Variability-selected Quasars in MACHO Project Magellanic Cloud Fields , 2002, astro-ph/0209513.

[32]  Paul Martini,et al.  Multiepoch Sky Surveys and the Lifetime of Quasars , 2003 .

[33]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[34]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[35]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[36]  Itziar Aretxaga,et al.  QSO variability: probing the starburst model , 1996, astro-ph/9609055.

[37]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[38]  M. F. Aller,et al.  The University of Michigan Radio Astronomy Data Base. I. Structure Function Analysis and the Relation between BL Lacertae Objects and Quasi-stellar Objects , 1992 .

[39]  D. Trèvese,et al.  Quasar Spectral Slope Variability in the Optical Band , 2001, astro-ph/0110075.

[40]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[41]  Press,et al.  Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. , 1995, Physical review letters.

[42]  B. Peterson,et al.  Characteristic Ultraviolet/Optical Timescales in Active Galactic Nuclei , 2001 .

[43]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[44]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[45]  A. Udalski,et al.  The Optical Gravitational Lensing Experiment. Final Reductions of the OGLE-III Data , 2008, 0807.3884.

[46]  R. Kron,et al.  Continuum Variability of Active Galactic Nuclei in the Optical-Ultraviolet Range , 2000, astro-ph/0012408.

[47]  Ž. Ivezić,et al.  Time Variability of Quasars: the Structure Function Variance , 2008, 0810.5159.

[48]  C. Kochanek,et al.  DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS , 2009, 0904.1740.

[49]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[50]  H. Ford,et al.  VARIABLE POINT SOURCES IN SLOAN DIGITAL SKY SURVEY STRIPE 82. I. PROJECT DESCRIPTION AND INITIAL CATALOG (0 hr ⩽α⩽ 4 hr) , 2009, 0912.0976.

[51]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[52]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[53]  Adam A. Miller,et al.  UNVEILING THE ORIGIN OF GRB 090709A: LACK OF PERIODICITY IN A REDDENED COSMOLOGICAL LONG-DURATION GAMMA-RAY BURST , 2009, 0911.3150.

[54]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[55]  X-ray Variability of the Seyfert 1 Markarian 335: Power Spectrum and Time Lags , 2008, 0804.3397.

[56]  Gregory Dobler,et al.  SELECTING QUASARS BY THEIR INTRINSIC VARIABILITY , 2010, 1002.2642.

[57]  S. Mineshige,et al.  Optical Variability in Active Galactic Nuclei: Starbursts or Disk Instabilities? , 1997, astro-ph/9712006.

[58]  R. Brunner,et al.  A Synoptic Multiwavelength Analysis of a Large Quasar Sample , 2005, astro-ph/0512476.

[59]  C. Kochanek,et al.  THE EFFECT OF A TIME-VARYING ACCRETION DISK SIZE ON QUASAR MICROLENSING LIGHT CURVES , 2010, 1002.3126.

[60]  Astronomy,et al.  The dependence of quasar variability on black hole mass , 2006, astro-ph/0612042.

[61]  T. Wang,et al.  DEPENDENCE OF THE OPTICAL/ULTRAVIOLET VARIABILITY ON THE EMISSION-LINE PROPERTIES AND EDDINGTON RATIO IN ACTIVE GALACTIC NUCLEI , 2010, 1005.0901.

[62]  Technion,et al.  Correlated X-ray/optical variability in the quasar MR 2251−178 , 2008, 0807.2451.

[63]  Characteristic QSO Accretion Disk Temperatures from Spectroscopic Continuum Variability , 2005, astro-ph/0506006.

[64]  et al,et al.  Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.

[65]  H. T. Liu,et al.  Tests for Standard Accretion Disk Models by Variability in Active Galactic Nuclei , 2008, 0803.0356.

[66]  Brandon C. Kelly,et al.  Are the Variations in Quasar Optical Flux Driven by Thermal Fluctuations , 2009 .

[67]  B. Peterson,et al.  SYSTEMATIC UNCERTAINTIES IN BLACK HOLE MASSES DETERMINED FROM SINGLE-EPOCH SPECTRA , 2008, 0810.3234.

[68]  Shuang Li,et al.  An accretion disc model for quasar optical variability , 2008, 0805.0351.