An ontology approach to data integration

The term Federated Databases refers to the data integration of distributed, autonomous and heterogeneous databases. However, a federation can also include information systems, not only databases. At integrating data, several issues must be addressed. Here, we focus on the problem of heterogeneity, more specifically on semantic heterogeneity that is, problems rela ted to semantically equivalent concepts or semantically related/unrelated concepts. In order to address this problem, we apply the idea of ontologies as a tool for data integration. In this paper, we explain this concept and we briefly describe a method for constructing an ontology by using a hybrid ontology approach.

[1]  Nieves R. Brisaboa,et al.  Ontologías en Federación de Bases de Datos , 2002 .

[2]  Laura M. Haas,et al.  Transforming Heterogeneous Data with Database Middleware: Beyond Integration , 1999, IEEE Data Eng. Bull..

[3]  G. Höfner,et al.  Data integration , 1993 .

[4]  Jennifer Widom,et al.  The TSIMMIS Project: Integration of Heterogeneous Information Sources , 1994, IPSJ.

[5]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[6]  Paul O'Brien,et al.  Domain Ontology Management Environment , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[7]  Max J. Egenhofer,et al.  Determining Semantic Similarity among Entity Classes from Different Ontologies , 2003, IEEE Trans. Knowl. Data Eng..

[8]  Silvana Castano,et al.  Semantic integration of heterogeneous information sources , 2001, Data Knowl. Eng..

[9]  A. Tversky Features of Similarity , 1977 .

[10]  Table of Contents , 2020, Pediatric Neurology.

[11]  Craig A. Knoblock,et al.  Query processing in the SIMS information mediator , 1997 .

[12]  Wilhelm Hasselbring,et al.  Information system integration , 2000, CACM.

[13]  Alejandra Cechich,et al.  Applying an ontology on data integration , 2003 .

[14]  Craig A. Knoblock,et al.  Learning object identification rules for information integration , 2001, Inf. Syst..

[15]  Patrick Valduriez,et al.  Principles of distributed database systems (2nd ed.) , 1999 .

[16]  Balakrishnan Chandrasekaran,et al.  What are ontologies, and why do we need them? , 1999, IEEE Intell. Syst..

[17]  A KnoblockCraig,et al.  Learning object identification rules for information integration , 2001 .

[18]  Patrick Valduriez,et al.  Principles of Distributed Database Systems , 1990 .

[19]  Peter Clark,et al.  Semantic Integration of Heterogeneous Information Sources Using a Knowledge-Based System , 2000 .

[20]  Paul O'Brien,et al.  Issues in Ontology-based Information Integration , 2001, OIS@IJCAI.

[21]  Stuart E. Madnick,et al.  Representing and reasoning about semantic conflicts in heterogeneous information systems , 1997 .

[22]  Laura M. Haas,et al.  Towards heterogeneous multimedia information systems: the Garlic approach , 1995, Proceedings RIDE-DOM'95. Fifth International Workshop on Research Issues in Data Engineering-Distributed Object Management.

[23]  Max J. Egenhofer,et al.  Putting Similarity Assessments into Context: Matching Functions with the User's Intended Operations , 1999, CONTEXT.

[24]  Ralf Rantzau,et al.  SIES: An Approach for a Federated Information System in Manufacturing , 2001 .

[25]  Thomas R. Gruber,et al.  Ontolingua: a mechanism to support portable ontologies , 1991 .