A Binary Differential Evolution with Adaptive Parameters Applied to the Multiple Knapsack Problem

This paper introduces an adaptive Binary Differential Evolution (aBDE) that self adjusts two parameters of the algorithm: perturbation and mutation rates. The well-known 0-1 Multiple Knapsack Problem (MKP) is addressed to validate the performance of the method. The MKP is a NP-hard optimization problem and the aim is to maximize the total profit subjected to the total weight in each knapsack that must be less than or equal to a given limit. Results were obtained using 11 instances of the problem with different degrees of complexity. The results were compared using aBDE, BDE, a standard Genetic Algorithm (GA), and its adaptive version (aGA). The results show that aBDE obtained better results than the other algorithms. This indicates that the proposed approach is an interesting and promising strategy for control of parameters and for optimization of complex problems.

[1]  Jin-Kao Hao,et al.  A hybrid approach for the 0-1 multidimensional knapsack problem , 2001, IJCAI 2001.

[2]  Dirk Thierens,et al.  An Adaptive Pursuit Strategy for Allocating Operator Probabilities , 2005, BNAIC.

[3]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[4]  Kusum Deep,et al.  A Modified Binary Particle Swarm Optimization for Knapsack Problems , 2012, Appl. Math. Comput..

[5]  Jonas Krause,et al.  A Survey of Swarm Algorithms Applied to Discrete Optimization Problems , 2013 .

[6]  Simon M. Lucas,et al.  Parallel Problem Solving from Nature - PPSN X, 10th International Conference Dortmund, Germany, September 13-17, 2008, Proceedings , 2008, PPSN.

[7]  Arild Hoff,et al.  Genetic Algorithms for 0/1 Multidimensional Knapsack Problems , 2005 .

[8]  Ana Maria A. C. Rocha,et al.  Improved binary artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems , 2014, Swarm Evol. Comput..

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  Irene Moser,et al.  Studying feedback mechanisms for adaptive parameter control in evolutionary algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[11]  Kenneth de Jong,et al.  Evolutionary computation: a unified approach , 2007, GECCO.

[12]  Shengyao Wang,et al.  A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem , 2013, Knowl. Based Syst..

[13]  Michèle Sebag,et al.  Extreme Value Based Adaptive Operator Selection , 2008, PPSN.

[14]  Xin-She Yang,et al.  Nature-Inspired Optimization Algorithms: Challenges and Open Problems , 2020, J. Comput. Sci..

[15]  Oliver Kramer,et al.  Evolutionary self-adaptation: a survey of operators and strategy parameters , 2010, Evol. Intell..

[16]  Xin-She Yang,et al.  Chapter 6 – Differential Evolution , 2014 .

[17]  Rafael S. Parpinelli,et al.  Tutorial Sobre o Uso de Técnicas para Controle de Parâmetros em Algoritmos de Inteligência de Enxame e Computação Evolutiva , 2014, RITA.

[18]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..