Larvicidal Efficiency of Aquatic Predators: A Perspective for Mosquito Biocontrol

Ram Kumar and Jiang-Shiou Hwang (2006) Larvicidal efficiency of aquatic predators: a perspective for mos- quito biocontrol. Zoological Studies 45(4): 447-466. Biological control of mosquito larvae with predators and other biocontrol agents would be a more-effective and eco-friendly approach, avoiding the use of synthetic chemicals and concomitant damage to the environment. Manipulating or introducing an auto-reproducing predator into the ecosystem may provide sustained biological control of pest populations. The selection of a biological control agent should be based on its self-replicating capacity, preference for the target pest popula- tion in the presence of alternate natural prey, adaptability to the introduced environment, and overall interaction with indigenous organisms. In order to achieve an acceptable range of control, a sound knowledge of various attributes of interactions between a pest population and the predator to be introduced is desirable. Herein, we qualitatively review a wide range of literature sources discussing the ability of different aquatic predators to con- trol mosquito larval populations in environments where mosquitoes naturally breed. Different predators of mos- quito larvae include amphibian tadpoles, fish, dragonfly larvae, aquatic bugs, mites, malacostracans, anostra- cans, cyclopoid copepods, and helminths. The most widely used biocontrol agents of mosquito populations are the western mosquito fish, Gambusia affinis, and the eastern mosquito fish, G. holbrooki. The effect of these fishes on native faunal composition and their inability to survive in small containers, tree holes etc., which are ideal breeding sites of vectorially important mosquitoes, make them inefficient in controlling mosquito popula- tions. On the basis of larvicidal efficiency, the ability to produce dormant eggs, the hatchability of dormant eggs after rehydration, faster developmental rates, and higher fecundity, various tadpole shrimp can be considered to

[1]  Some Insect and other Enemies of Mosquito Larvae. , 1928 .

[2]  M. O. T. Iyexgar Parasitic Nematodes of Anopheles in Bengal. , 1930 .

[3]  H. S. Hurlbut Copepod Observed Preying on First Instar Larva of Anopheles quadrimaculatus Say , 1938 .

[4]  D. Graham Mosquito Life in the Auckland District. , 1939 .

[5]  Louis A. Krumholz,et al.  Reproduction in the Western Mosquitofish, Gambusia affinis affinis (Baird & Girard), and Its Use in Mosquito Control , 1948 .

[6]  G. Fryer The food of some freshwater cyclopoid copepods and its ecological significance. , 1957 .

[7]  H. G. James SOME PREDATORS OF AEDES STIMULANS (WALK.) AND AEDES TRICHURUS (DYAR) (DIPTERA: CULICIDAE) IN WOODLAND POOLS , 1961 .

[8]  M. Maffi Triops granarius (Lucas) (Crustacea) as a Natural Enemy of Mosquito Larvæ , 1962, Nature.

[9]  D. W. Jenkins PATHOGENS, PARASITES AND PREDATORS OF MEDICALLY IMPORTANT ARTHROPODS. ANNOTATED LIST AND BIBLIOGRAPHY. , 1964, Bulletin of the World Health Organization.

[10]  H. G. James Insect Predators of Univoltine Mosquitoes in Woodland Pools of the Pre-Cambrian Shield in Ontario , 1966, The Canadian Entomologist.

[11]  J. Borden,et al.  Predation by Notonecta undulata (Heteroptera: Notonectidae) on Larvae of the Yellow-Fever Mosquito , 1970 .

[12]  S. Hurlbert,et al.  Ecosystem Alteration by Mosquitofish (Gambusia affinis) Predation , 1972, Science.

[13]  J. C. Grubb Differential Predation by Gambusia affinis on the Eggs of Seven Species of Anuran Amphibians , 1972 .

[14]  A. Spielman,et al.  Predation on peridomestic mosquitoes by hylid tadpoles on Grand Bahama Island. , 1974, The American journal of tropical medicine and hygiene.

[15]  P. Moyle Fish introductions in California: History and impact on native fishes , 1976 .

[16]  E. E. Davis A receptor sensitive to oviposition site attractants on the antennae of the mosquito, Aedes Aegypti. , 1976, Journal of insect physiology.

[17]  N. Angerilli INFLUENCES OF EXTRACTS OF FRESHWATER VEGETATION ON THE SURVIVAL AND OVIPOSITION BY AEDES AEGYPTI (DIPTERA: CULICIDAE) , 1980, The Canadian Entomologist.

[18]  C. Williamson The predatory behavior of Mesocyclops edax: Predator preferences, prey defenses, and starvation-induced changes1 , 1980 .

[19]  W. J. Lewis,et al.  Semiochemicals, their role in pest control , 1981 .

[20]  R. Pastorok PREY VULNERABILITY AND SIZE SELECTION BY CHAOBORUS LARVAE , 1981 .

[21]  L. Caltagirone,et al.  LANDMARK EXAMPLES IN CLASSICAL BIOLOGICAL CONTROL , 1981 .

[22]  P. Hebert,et al.  A laboratory study of the feeding behavior of the rhabdocoel Mesostoma ehrenbergii on pond Cladocera , 1982 .

[23]  B. Woodward Tadpole Size and Predation in the Chihuahuan Desert , 1983 .

[24]  C. Williamson Behavioral interactions between a cyclopoid copepod predator and its prey , 1983 .

[25]  C. Greene Selective Predation in Freshwater Zooplankton Communities , 1983 .

[26]  W. Murdoch,et al.  EFFECTS OF THE GENERAL PREDATOR, NOTONECTA (HEMIPTERA) UPON A FRESHWATER COMMUNITY , 1984 .

[27]  J. Chesson Effect of Notonectids (Hemiptera: Notonectidae) on Mosquitoes (Diptera: Culicidae): Predation or Selective Oviposition? , 1984 .

[28]  J. Travis,et al.  The role of relative body size in a predator-prey relationship between dragonfly naliads and larval anurans , 1985 .

[29]  J. Beier,et al.  Gregarine parasites of mosquitoes. , 1985 .

[30]  J. Bence,et al.  PREY SIZE SELECTION BY THE MOSQUITOFISH: RELATION TO OPTIMAL DIET THEORY' , 1986 .

[31]  L. Lacey,et al.  Microbial control of black flies and mosquitoes. , 1986, Annual review of entomology.

[32]  Marten Gg Mosquito control by plankton management: the potential of indigestible green algae. , 1986 .

[33]  G. Marten Mosquito control by plankton management: the potential of indigestible green algae. , 1986, The Journal of tropical medicine and hygiene.

[34]  A. Crivelli,et al.  The diet of the Mosquitofish Gambusia affinis (Baird & Girard) (Poeciliidae) in Mediterranean France , 1987, Revue d'Écologie (La Terre et La Vie).

[35]  B. Kay,et al.  Mesocyclops aspericornis (Copepoda) and Bacillus thuringiensis var. israelensis for the biological control of Aedes and Culex vectors (Diptera: Culicidae) breeding in crab holes, tree holes, and artificial containers. , 1987, Journal of medical entomology.

[36]  Dip. Ed MSc PhD D. Dudley Williams BSc The Ecology of Temporary Waters , 1987, Springer Netherlands.

[37]  Z. Barak,et al.  Fate of Bacillus thuringiensis subsp. israelensis under Simulated Field Conditions. , 1987, Applied and environmental microbiology.

[38]  H. Dumont,et al.  Flatworm predator (Mesostoma cf. lingua) releases a toxin to catch planktonic prey (Daphnia magna)1 , 1987 .

[39]  Control of Aedes aegypti larvae in household water containers by Chinese cat fish. , 1987, Bulletin of the World Health Organization.

[40]  D. Williams The Ecology of Temporary Waters , 1987 .

[41]  J. Blackmer,et al.  Humoral control of pre-oviposition behaviour in the mosquito, Aedes aegypti , 1987 .

[42]  M. Laird The Natural History of Larval Mosquito Habitats , 1988 .

[43]  J. Waage,et al.  Biological control: challenges and opportunities , 1988 .

[44]  A. Sih,et al.  Antipredator defenses and the persistence of amphibian larvae with fishes , 1988 .

[45]  Andrew Sih,et al.  Predation: direct and indirect impacts on aquatic communities , 1988 .

[46]  S. Hubbard,et al.  The functional response of Toxorhynchites rutilus rutilus to changes in the population density of its prey Aedes aegypti , 1988, Medical and veterinary entomology.

[47]  R. Rowe The Dragonflies of New Zealand , 1988 .

[48]  G. Marten,et al.  Natural control of larval Anopheles albimanus (Diptera: Culicidae) by the predator Mesocyclops (Copepoda: Cyclopoida). , 1989, Journal of medical entomology.

[49]  M. Bentley,et al.  Chemical ecology and behavioral aspects of mosquito oviposition. , 1989, Annual review of entomology.

[50]  S. Wissinger Seasonal Variation in the Intensity of Competition and Predation Among Dragonfly Larvae , 1989 .

[51]  B. Annis,et al.  Suppression of larval Aedes aegypti populations in household water storage containers in Jakarta, Indonesia, through releases of first-instar Toxorhynchites splendens larvae. , 1989, Journal of the American Mosquito Control Association.

[52]  G. Meffe,et al.  Small fishes in strange places: a review of introduced poeciliids. , 1989 .

[53]  G. Marten Evaluation of cyclopoid copepods for Aedes albopictus control in tires. , 1990, Journal of the American Mosquito Control Association.

[54]  Widiarti,et al.  Toxorhynchites amboinensis larvae released in domestic containers fail to control dengue vectors in a rural village in central Java. , 1990, Journal of the American Mosquito Control Association.

[55]  Analysis of the gut contents of naiads of Enallagma civile (Odonata: Coenagrionidae) from a Texas pond. , 1990, Journal of the American Mosquito Control Association.

[56]  G. Marten Elimination of Aedes albopictus from tire piles by introducing Macrocyclops albidus (Copepoda, Cyclopidae). , 1990, Journal of the American Mosquito Control Association.

[57]  M. Mulla,et al.  Ecology of Culex tarsalis (Diptera: Culicidae): factors influencing larval abundance in mesocosms in southern California. , 1990, Journal of medical entomology.

[58]  J. Cech,et al.  Prey selection by mosquitofish (Gambusia affinis) in California rice fields: effect of vegetation and prey species. , 1990, Journal of the American Mosquito Control Association.

[59]  L. Munstermann,et al.  First record of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in North American Aedes albopictus. , 1990, Journal of the American Mosquito Control Association.

[60]  R. Drenner,et al.  Experimental Mesocosm Study of the Separate and Interaction Effects of Phosphorus and Mosquitofish (Gambusia affinis) on Plankton Community Structure , 1990 .

[61]  Indirect effects of the mosquitofish Gambusia affinis on the mosquito Culex tarsalis , 1990 .

[62]  M. Laird New Zealand's northern mosquito survey, 1988-89. , 1990, Journal of the American Mosquito Control Association.

[63]  A. W. Sweeney,et al.  Potential of microsporidia for the biological control of mosquitoes. , 1991, Parasitology today.

[64]  A. Arthington Ecological and Genetic Impacts of Introduced and Translocated Freshwater Fishes in Australia , 1991 .

[65]  M. Mulla,et al.  Biological control of Culex mosquitoes (Diptera: Culicidae) by the tadpole shrimp, Triops longicaudatus (Notostraca: Triopsidae). , 1991, Journal of medical entomology.

[66]  M. Mulla,et al.  Effect of drying period and soil moisture on egg hatch of the tadpole shrimp (Notostraca: Triopsidae). , 1992, Journal of economic entomology.

[67]  T. Andreadis,et al.  Laboratory evaluation of Acanthocyclops vernalis and Diacyclops bicuspidatus thomasi (Copepoda: Cyclopidae) as predators of Aedes canadensis and Ae. stimulans (Diptera: Culicidae). , 1992, Journal of medical entomology.

[68]  B. Kay,et al.  Laboratory evaluation of Brazilian Mesocyclops (Copepoda: Cyclopidae) for mosquito control. , 1992, Journal of medical entomology.

[69]  M. Service Importance of ecology in Aedes aegypti control. , 1992, The Southeast Asian journal of tropical medicine and public health.

[70]  R. Pollack,et al.  Time limitation and the role of research in the worldwide attempt to eradicate malaria. , 1993, Journal of medical entomology.

[71]  K. Irvine,et al.  Predatory behaviour of the cyclopoid copepod Mesocyclops aequatorialis aequatorialis in Lake Malawi, a deep tropical lake , 1993 .

[72]  S. Higgs,et al.  Bacillus thuringiensis : an environmental biopesticide : theory and practice , 1993 .

[73]  R. Adrian,et al.  Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three, differenfly sized species , 1993 .

[74]  Burt P. Kotler,et al.  Oviposition habitat selection by the mosquito, Culiseta longiareolata: effects of conspecifics, food and green toad tadpoles , 1993 .

[75]  N. Tietze,et al.  Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda: Cyclopidae), Bacillus thuringiensis var. israelensis, Bacillus sphaericus, and methoprene. , 1994, Journal of the American Mosquito Control Association.

[76]  S. Ritchie,et al.  Do fish repel oviposition by Aedes taeniorhynchus? , 1994, Journal of the American Mosquito Control Association.

[77]  P. Soranno,et al.  Recurrent response patterns of a zooplankton community to whole‐lake fish manipulation , 1994 .

[78]  M. Mulla,et al.  Field Introductions and Establishment of the Tadpole Shrimp, Triops longicaudatus (Notostraca: Triopsidae), a Biological Control Agent of Mosquitos , 1994 .

[79]  G. Marten,et al.  Control of larval Aedes aegypti (Diptera: Culicidae) by cyclopoid copepods in peridomestic breeding containers. , 1994, Journal of medical entomology.

[80]  B. Hicks,et al.  Behavioral interactions between black mudfish (Neochanna diversus Stokell, 1949: Galaxiidae) and mosquitofish (Gambusia affinis Baird & Girard, 1854)a , 1994 .

[81]  Burt P. Kotler,et al.  Direct and indirect effects of a predatory backswimmer (Notonecta maculata) on community structure of desert temporary pools , 1995 .

[82]  B. Kay,et al.  Aedes aegypti control in the Lao People's Democratic Republic, with reference to copepods. , 1995, The American journal of tropical medicine and hygiene.

[83]  J. M. Scriber,et al.  Toxicity of Bacillus thuringiensis var. kurstaki to three nontarget Lepidoptera in field studies , 1995 .

[84]  J. Washburn Regulatory factors affecting larval mosquito populations in container and pool habitats: implications for biological control. , 1995, Journal of the American Mosquito Control Association.

[85]  M. Laird Background and findings of the 1993-94 New Zealand mosquito survey , 1995 .

[86]  D. Chivers,et al.  Damselfly larvae learn to recognize predators from chemical cues in the predator's diet , 1996, Animal Behaviour.

[87]  L. Blaustein,et al.  Larval Salamandra drive temporary pool community dynamics : evidence from an artificial pool experiment , 1996 .

[88]  Daniel Simberloff,et al.  Risks of species introduced for biological control , 1996 .

[89]  I. G. Avila,et al.  Release of Romanomermis iyengari (Nematoda: Mermithidae) To Control Aedes taeniorhynchus (Diptera: Culicidae) in Punta del Este, Isla de la Juventud, Cuba , 1996 .

[90]  M. Mulla,et al.  Effect of tadpole shrimp, Triops longicaudatus, (Notostraca: Triopsidae), on the efficacy of the microbial control agent Bacillus thuringiensis var. israelensis in experimental microcosms. , 1996, Journal of the American Mosquito Control Association.

[91]  Mulla Ms,et al.  Optimal conditions for rearing the tadpole shrimp, Triops longicaudatus (Notostraca:Triopsidae), a biological control agent against mosquitoes. , 1996 .

[92]  Adverse assessments of Gambusia affinis: an alternate view for mosquito control practitioners. , 1996 .

[93]  W. Buttemer,et al.  Predation by the non-native fishGambusia holbrookion smallLitoria aureaandL. dentatatadpoles , 1996 .

[94]  H. Rupp Adverse assessments of Gambusia affinis: an alternate view for mosquito control practitioners. , 1996, Journal of the American Mosquito Control Association.

[95]  Mulla Ms,et al.  Effect of tadpole shrimp, Triops longicaudatus, (Notostraca: Triopsidae), on the efficacy of the microbial control agent Bacillus thuringiensis var. israelensis in experimental microcosms. , 1996 .

[96]  B. Graves,et al.  Juvenile toads avoid chemical cues from snake predators , 1997, Animal Behaviour.

[97]  Luciana Urbano dos Santos,et al.  Survey of cyclopids (Crustacea, Copepoda) in Brazil and preliminary screening of their potential as dengue vector predators , 1997 .

[98]  Use of Bactimos briquets (B.t.i. formulation) combined with the backswimmer Notonecta irrorata (Hemiptera:Notonectidae) for control of mosquito larvae. , 1997, Journal of the American Mosquito Control Association.

[99]  H. Stich,et al.  Predation impact of Cyclops vicinus on the rotifer community in Lake Constance in spring , 1997 .

[100]  C. Webb,et al.  Does predation by the fish Gambusia holbrooki (Atheriniformes: Poeciliidae) contribute to declining frog populations? , 1997 .

[101]  R. Lim,et al.  Impact of the introduced poeciliid Gambusia holbrooki (Girard, 1859) on the growth and reproduction of Pseudomugil signifer (Kner, 1865) in Australia , 1997 .

[102]  D. Williams Temporary ponds and their invertebrate communities , 1997 .

[103]  S. Rawlins,et al.  Evaluation of Caribbean strains of Macrocyclops and Mesocyclops (Cyclopoida:Cyclopidae) as biological control tools for the dengue vector Aedes aegypti. , 1997, Journal of the American Mosquito Control Association.

[104]  Laboratory evaluation of the biocontrol potential of Mesocyclops thermocyclopoides (Copepoda: Cyclopidae) against mosquito larvae. , 1997, The Southeast Asian journal of tropical medicine and public health.

[105]  D. Chivers,et al.  Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus , 1998 .

[106]  J. Petranka,et al.  Chemically mediated avoidance of a predatory odonate (Anaxjunius) by American toad (Bufoamericanus) and wood frog (Ranasylvatica) tadpoles , 1998, Behavioral Ecology and Sociobiology.

[107]  B. León Influence of the predatory backswimmer, Notonecta maculata, on invertebrate community structure , 1998 .

[108]  L. Dill,et al.  The scent of death: Chemosensory assessment of predation risk by prey animals , 1998 .

[109]  T. Livdahl,et al.  A seasonal shift in egg-laying behaviour in response to cues of future competition in a treehole mosquito , 1998 .

[110]  B. Kay,et al.  Eradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. , 1998, The American journal of tropical medicine and hygiene.

[111]  B. McArdle,et al.  Dietary composition of Gambusia affinis (Family Poeciliidae) populations in the northern Waikato region of New Zealand , 1998 .

[112]  Laboratory evaluation of the freshwater prawn, Macrobrachium borellii, as a predator of mosquito larvae , 1998, Aquatic Sciences.

[113]  Ram Kumar,et al.  Post-embryonic developmental rates as a function of food type in the cyclopoid copepod, Mesocyclops thermocyclopoides Harada , 1998 .

[114]  A. Arthington,et al.  Diet of the Exotic Mosquitofish, Gambusia holbrooki, in an Australian Lake and Potential for Competition with Indigenous Fish Species , 1999, Asian Fisheries Science.

[115]  W. Ivantsoff,et al.  Detection of predation on Australian native fishes by Gambusia holbrooki , 1999 .

[116]  M. Dicke,et al.  Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions , 1999 .

[117]  D. Morgan,et al.  Is the Mosquitofish, Gambusia holbrooki (Poeciliidae), a major threat to the native freshwater fishes of south-western Australia? , 1999 .

[118]  E. García‐Berthou Food of introduced mosquitofish: ontogenetic diet shift and prey selection , 1999 .

[119]  Cohen,et al.  Species richness and the proportion of predatory animal species in temporary freshwater pools: relationships with habitat size and permanence , 1999 .

[120]  W. Stiekema,et al.  Bacillus thuringiensis toxin-mediated insect resistance in plants , 1999 .

[121]  L. Canton,et al.  The Romanomermis iyengari parasite for Anopheles pseudopunctipennis suppression in natural habitats in Oaxaca State, Mexico. , 1999, Revista panamericana de salud publica = Pan American journal of public health.

[122]  Ram Kumar,et al.  Effect of Algal Food on Animal Prey Consumption Rates in the Omnivorous Copepod, Mesocyclops thermocyclopoides , 1999 .

[123]  L. Kats,et al.  Effect of Introduced Mosquitofish on Pacific Treefrogs and the Role of Alternative Prey , 1999 .

[124]  M. Perani,et al.  The safety of Bacillus thuringiensis to mammals investigated by oral and subcutaneous dosage , 1999 .

[125]  Ram Kumar,et al.  Demographic responses of adult Mesocyclops thermocyclopoides (Copepoda, Cyclopoida) to different plant and animal diets , 1999 .

[126]  W. Breslin,et al.  Developmental toxicity of Spinosad administered by gavage to CD rats and New Zealand white rabbits. , 2000, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[127]  R. Knapp,et al.  Non‐Native Fish Introductions and the Decline of the Mountain Yellow‐Legged Frog from within Protected Areas , 2000 .

[128]  L. Copping,et al.  Biopesticides: a review of their action, applications and efficacy , 2000 .

[129]  G. Marten,et al.  Natural control of Culex quinquefasciatus larvae in residential ditches by the copepod Macrocyclops albidus. , 2000, Journal of vector ecology : journal of the Society for Vector Ecology.

[130]  J. Farris,et al.  Evaluating Mosquito Control Pesticides for Effect on Target and Nontarget Organisms , 2000, Archives of environmental contamination and toxicology.

[131]  P. Eklöv Chemical cues from multiple predator-prey interactions induce changes in behavior and growth of anuran larvae , 2000, Oecologia.

[132]  L. Blaustein,et al.  Influence of nymphal Anax imperator (Odonata: Aeshnidae) on oviposition by the mosquito Culiseta longiareolata (Diptera: Culicidae) and community structure in temporary pools. , 2000, Journal of vector ecology : journal of the Society for Vector Ecology.

[133]  R. Lampman,et al.  Field efficacy of commercial antimosquito products in Illinois. , 2000, Journal of the American Mosquito Control Association.

[134]  T. Adak,et al.  Control of aedes aegypti breeding in desert coolers and tires by use of Bacillus thuringiensis var. Israelensis formulation. , 2000, Journal of the American Mosquito Control Association.

[135]  P. Das,et al.  Efficacy of aqueous suspension and granular formulations of Bacillus thuringiensis (Vectobac) against mosquito vectors. , 2000, Acta tropica.

[136]  Issg 100 of the World’s Worst Invasive Alien Species: A Selection From The Global Invasive Species Database , 2000 .

[137]  M. Crossland,et al.  An assessment of the introduced mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings and tadpoles of native and non-native anurans , 2000 .

[138]  T. Bellows,et al.  Restoring Population Balance through Natural Enemy Introductions , 2001 .

[139]  L. Cruz‐López,et al.  Selective Oviposition by Aedes aegypti (Diptera: Culicidae) in Response to Mesocyclops longisetus (Copepoda: Cyclopoidea) Under Laboratory and Field Conditions , 2001, Journal of medical entomology.

[140]  M. Mulla,et al.  Effects of nutritional factors and soil addition on growth, longevity and fecundity of the tadpole shrimp Triops newberryi (Notostraca: Triopsidae), a potential biological control agent of immature mosquitoes. , 2001, Journal of vector ecology : journal of the Society for Vector Ecology.

[141]  D. Headrick,et al.  Biological Control as a Tool for Ecosystem Management , 2001 .

[142]  T. Sunahara,et al.  Habitat size: a factor determining the opportunity for encounters between mosquito larvae and aquatic predators. , 2002, Journal of vector ecology : journal of the Society for Vector Ecology.

[143]  M. Takagi,et al.  Leaf litter decay process and the growth performance of Aedes albopictus larvae (Diptera: Culicidae). , 2002, Journal of vector ecology : journal of the Society for Vector Ecology.

[144]  M. Mulla,et al.  Strategies for the Management of Resistance in Mosquitoes to the Microbial Control Agent Bacillus sphaericus , 2002, Journal of medical entomology.

[145]  M. Mangel,et al.  Predation‐dependent oviposition habitat selection by the mosquito Culiseta longiareolata: a test of competing hypotheses , 2002 .

[146]  G. Marti,et al.  Laboratory evaluation of Mesocyclops annulatus (Wierzejski, 1892) (Copepoda: Cyclopidea) as a predator of container-breeding mosquitoes in Argentina. , 2002, Memorias do Instituto Oswaldo Cruz.

[147]  G. Pasquali,et al.  Characterization of two Bacillus thuringiensis isolates from South Brazil and their toxicity against Anticarsia gemmatalis (Lepidoptera: Noctuidae) , 2002 .

[148]  L. Blaustein,et al.  OVIPOSITION HABITAT SELECTION BY MOSQUITOES (CULISETA LONGIAREOLATA) AND CONSEQUENCES FOR POPULATION SIZE , 2002 .

[149]  L. Frid,et al.  Multiple agents in biological control: improving the odds? , 2002 .

[150]  J. Berti,et al.  Association of cyclopoid copepods with the habitat of the malaria vector Anopheles aquasalis in the peninsula of Paria, Venezuela. , 2002, Journal of the American Mosquito Control Association.

[151]  M. Mulla,et al.  Factors Affecting Egg Hatch of the Tadpole Shrimp Triops newberryi, a Potential Biological Control Agent of Immature Mosquitoes , 2002 .

[152]  Point Source Inoculation of Mesocyclops (Copepoda: Cyclopidae) Gives Widespread Control of Ochlerotatus and Aedes (Diptera: Culicidae) Immatures in Service Manholes and Pits in North Queensland, Australia , 2002, Journal of medical entomology.

[153]  M. Mahony,et al.  The role of introduced mosquitofish (Gambusia holbrooki) in excluding the native green and golden bell frog (Litoria aurea) from original habitats in south-eastern Australia , 2002, Oecologia.

[154]  M. Mangel,et al.  Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density , 2003 .

[155]  K. Babbitt,et al.  The relative impacts of native and introduced predatory fish on a temporary wetland tadpole assemblage , 2003, Oecologia.

[156]  Ram Kumar,et al.  Predation on mosquito larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the presence of alternate prey , 2003 .

[157]  H. Briegel,et al.  Physiological bases of mosquito ecology. , 2003, Journal of vector ecology : journal of the Society for Vector Ecology.

[158]  T. Williams,et al.  Is the Naturally Derived Insecticide Spinosad® Compatible with Insect Natural Enemies? , 2003 .

[159]  P. Kittayapong,et al.  Enhancement of the efficacy of a combination of Mesocyclops aspericornis and Bacillus thuringiensis var. israelensis by community-based products in controlling Aedes aegypti larvae in Thailand. , 2003, The American journal of tropical medicine and hygiene.

[160]  P. Lester,et al.  Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. , 2003, Journal of vector ecology : journal of the Society for Vector Ecology.

[161]  Ram Kumar Effects of Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) Predation on the Population Growth Patterns of Different Prey Species , 2003 .

[162]  L. P. Lounibos,et al.  Laboratory and field studies of Macrocyclops albidus (Crustacea: Copepoda) for biological control of mosquitoes in artificial containers in a subtropical environment. , 2004, Journal of vector ecology : journal of the Society for Vector Ecology.

[163]  L. Blaustein,et al.  Typhloplanid flatworms (Mesostoma and related genera): Mechanisms of predation and evidence that they structure aquatic invertebrate communities , 1990, Hydrobiologia.

[164]  A. G. Humes How many copepods? , 2004, Hydrobiologia.

[165]  D. Chivers,et al.  Contrasting Behavioral Responses by Detritivorous and Predatory Mayflies to Chemicals Released by Injured Conspecifics and Their Predators , 1999, Journal of Chemical Ecology.

[166]  U. Thavara,et al.  Evaluation of attractants and egg-laying substrate preference for oviposition by Aedes albopictus (Diptera: Culicidae). , 2004, Journal of vector ecology : journal of the Society for Vector Ecology.

[167]  L. De Meester,et al.  Temporary pools are not `enemy-free' , 2002, Hydrobiologia.

[168]  R. Campos,et al.  Study of the Insects Associated with the Floodwater Mosquito Ochlerotatus Albifasciatus (Diptera: Culicidae) and their Possible Predators in Buenos Aires Province, Argentina , 2004, Hydrobiologia.

[169]  John C. Carlson,et al.  Ecological limitations on aquatic mosquito predator colonization in the urban environment. , 2004, Journal of vector ecology : journal of the Society for Vector Ecology.

[170]  L. Blaustein Evidence for predatory flatworms as organizers of zooplankton and mosquito community structure in rice fields , 1990, Hydrobiologia.

[171]  Jonathan M. Chase,et al.  Effects of interspecific competition, predation, and their interaction on survival and development time of immature Anopheles quadrimaculatus. , 2004, Journal of vector ecology : journal of the Society for Vector Ecology.

[172]  Stuart H. Hurlbert,et al.  Impacts of mosquitofish (Gambusia affinis) predation on plankton communities , 1981, Hydrobiologia.

[173]  S. Lawler,et al.  Effects of an alien fish, Gambusia affinis, on an endemic California fairy shrimp, Linderiella occidentalis: implications for conservation of diversity in fishless waters , 2004 .

[174]  S. K. Raut,et al.  Predatory efficiency of the water bug Sphaerodema annulatum on mosquito larvae (Culex quinquefasciatus) and its effect on the adult emergence. , 2004, Bioresource technology.

[175]  Ram Kumar,et al.  Patterns of prey selectivity in the cyclopoid copepod Mesocyclops thermocyclopoides , 2002, Aquatic Ecology.

[176]  D. Schindler,et al.  Effects of aquatic insect predators on zooplankton in fishless ponds , 1996, Hydrobiologia.

[177]  C. Williamson The swimming and feeding behavior of Mesocyclops , 1986, Hydrobiologia.

[178]  J. Tundisi,et al.  Predation on Ceriodaphnia cornuta and Brachionus calyciflorus by two Mesocyclops species coexisting in Barra Bonita reservoir (SP, Brazil) , 1990, Hydrobiologia.

[179]  Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers. , 2004, Journal of vector ecology : journal of the Society for Vector Ecology.

[180]  R. S. Stemberger Prey selection by the copepod Diacyclops thomasi , 1985, Oecologia.

[181]  T. Pandian,et al.  Studies on predation of the mosquito Culex fatigans by Rana tigrina tadpoles , 1983, Hydrobiologia.

[182]  A. Specziár Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusiaholbrooki, in a thermal spa under temperate climate, of Lake Hévíz, Hungary , 2004, Hydrobiologia.

[183]  M. Gophen,et al.  Food composition of the fish community in Lake Agmon , 1998, Hydrobiologia.

[184]  A. Sostoa,et al.  Life history of Gambusia holbrooki (Pisces, Poeciliidae) in the Ebro delta (NE Iberian peninsula) , 1996, Hydrobiologia.

[185]  A. Janicki,et al.  An analysis of prey selection by Mesocyclops edax , 1990, Hydrobiologia.

[186]  Mark S. Hoddle,et al.  Restoring Balance: Using Exotic Species to Control Invasive Exotic Species , 2004 .

[187]  J. A. Cabral,et al.  Environmental and biological factors influence the relationship between a predator fish, Gambusia holbrooki, and its main prey in rice fields of the Lower Mondego River Valley (Portugal) , 1998, Hydrobiologia.

[188]  T. J. Pandian,et al.  Influence of temperature and body weight on mosquito predation by the dragonfly nymph Mesogomphus lineatus , 2004, Hydrobiologia.

[189]  J. Petranka,et al.  Chemicals of Predatory Mosquitofish (Gambusia affinis) Influence Selection of Oviposition Site by Culex Mosquitoes , 2002, Journal of Chemical Ecology.

[190]  Ram Kumar,et al.  Effect of the cyclopoid copepod Mesocyclops thermocyclopoides on the interactions between the predatory rotifer Asplanchna intermedia and its prey Brachionus calyciflorus and B. angularis , 2001, Hydrobiologia.

[191]  Roger Englund The Impacts of Introduced Poeciliid Fish and Odonata on the Endemic Megalagrion (Odonata) Damselflies of Oahu Island, Hawaii , 1999, Journal of Insect Conservation.

[192]  H. Teng,et al.  Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan. , 2005, Journal of vector ecology : journal of the Society for Vector Ecology.

[193]  G. R. Okogun,et al.  Ecology of mosquitoes of Midwestern Nigeria. , 2005, Journal of vector borne diseases.

[194]  Frequency-dependent prey-selection of predacious water bugs on Armigeres subalbatus immatures. , 2005, Journal of vector borne diseases.

[195]  C. Stoops Influence of Bacillus thuringiensis var. israelensis on oviposition of Aedes albopictus (Skuse). , 2005, Journal of vector ecology : journal of the Society for Vector Ecology.

[196]  M. Mulla,et al.  Non-larvicidal effects of Bacillus thuringiensis israelensis and Bacillus sphaericus on oviposition and adult mortality of Culex quinquefasciatus Say (Diptera: Culicidae). , 2005, Journal of vector ecology : journal of the Society for Vector Ecology.

[197]  T. Cornelissen,et al.  What makes a successful biocontrol agent? A meta-analysis of biological control agent performance , 2005 .

[198]  Rafael Pérez-Pacheco,et al.  Control of the mosquito Anopheles pseudopunctipennis (Diptera: Culicidae) with Romanomermis iyengari (Nematoda: Mermithidae) in Oaxaca, Mexico , 2005 .

[199]  J. Cilek,et al.  Evaluation of the naturally-derived insecticide spinosad against Culex pipiens L. (Diptera: Culicidae) larvae in septic tank water in Antalya, Turkey. , 2005, Journal of vector ecology : journal of the Society for Vector Ecology.

[200]  D. Williams The biology of temporary waters. , 2005 .

[201]  R. Russell,et al.  A comparison of mosquito predation by the fish Pseudomugil signifier Kner and Gambusia holbrooki (Girard) in laboratory trials. , 2005, Journal of vector ecology : journal of the Society for Vector Ecology.

[202]  M. Mulla,et al.  Toxicity and effects of microbial mosquito larvicides and larvicidal oil on the development and fecundity of the tadpole shrimp Triops newberryi (Packard) (Notostraca: Triopsidae). , 2005, Journal of vector ecology : journal of the Society for Vector Ecology.