Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias

[1]  Philipp H. Boersch-Supan,et al.  Robustness of simple avian population trend models for semi-structured citizen science data is species-dependent , 2019 .

[2]  P. Diggle,et al.  Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg , 2019, Scientific Reports.

[3]  Chris S. Elphick,et al.  An evaluation of stringent filtering to improve species distribution models from citizen science data , 2019, Diversity and Distributions.

[4]  Tom A. August,et al.  Citizen meets social science: predicting volunteer involvement in a global freshwater monitoring experiment , 2019, Freshwater Science.

[5]  Steve Kelling,et al.  Using Semistructured Surveys to Improve Citizen Science Data for Monitoring Biodiversity , 2019, Bioscience.

[6]  Helen E. Roy,et al.  Developing the global potential of citizen science: Assessing opportunities that benefit people, society and the environment in East Africa , 2018, Journal of Applied Ecology.

[7]  J. Lyons,et al.  Accounting for Surveyor Effort in Large-Scale Monitoring Programs , 2018, Journal of Fish and Wildlife Management.

[8]  Steve Kelling,et al.  Finding the signal in the Noise of Citizen Science Observations , 2018, bioRxiv.

[9]  Ç. Şekercioğlu,et al.  Using opportunistic citizen science data to estimate avian population trends , 2018 .

[10]  Steve Kelling,et al.  Estimates of observer expertise improve species distributions from citizen science data , 2018 .

[11]  B. Morgan,et al.  Using citizen science butterfly counts to predict species population trends , 2017, Conservation biology : the journal of the Society for Conservation Biology.

[12]  M. Ridout,et al.  The power of monitoring: optimizing survey designs to detect occupancy changes in a rare amphibian population , 2017, Scientific Reports.

[13]  Tom A. August,et al.  A national-scale assessment of climate change impacts on species: Assessing the balance of risks and opportunities for multiple taxa , 2017 .

[14]  Mike Sharples,et al.  Profiles of engagement in online communities of citizen science participation , 2017, Comput. Hum. Behav..

[15]  M. Haklay,et al.  Exploring Engagement Characteristics and Behaviours of Environmental Volunteers , 2017 .

[16]  Jessica L. Cappadonna,et al.  Citizen Science Terminology Matters: Exploring Key Terms , 2017, Citizen Science: Theory and Practice.

[17]  Helen E Roy,et al.  The diversity and evolution of ecological and environmental citizen science , 2017, PloS one.

[18]  Margret C. Domroese,et al.  Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project , 2017 .

[19]  Louis Liebenberg,et al.  Smartphone Icon User Interface design for non-literate trackers and its implications for an inclusive citizen science , 2017 .

[20]  S. West,et al.  Recruiting and Retaining Participants in Citizen Science: What Can Be Learned from the Volunteering Literature? , 2016 .

[21]  D. Roy,et al.  Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour , 2016, Scientific Reports.

[22]  Haosheng Huang,et al.  European Handbook of Crowdsourced Geographic Information , 2016 .

[23]  M. Haklay,et al.  Why is participation inequality important , 2016 .

[24]  D. Garthwaite,et al.  Impacts of neonicotinoid use on long-term population changes in wild bees in England , 2016, Nature Communications.

[25]  V. Strezov,et al.  An Analysis of Citizen Science Based Research: Usage and Publication Patterns , 2015, PloS one.

[26]  Marshall J. Iliff,et al.  Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves? , 2015, PloS one.

[27]  Timos Papadopoulos,et al.  Emerging technologies for biological recording , 2015 .

[28]  Michael J. O. Pocock,et al.  Bias and information in biological records , 2015 .

[29]  S. Gillings,et al.  Geographical range margins of many taxonomic groups continue to shift polewards , 2015 .

[30]  Michael J. O. Pocock,et al.  The Biological Records Centre: a pioneer of citizen science , 2015 .

[31]  Ben Collen,et al.  Global effects of land use on local terrestrial biodiversity , 2015, Nature.

[32]  Lesandro Ponciano,et al.  Finding Volunteers' Engagement Profiles in Human Computation for Citizen Science Projects , 2014, Hum. Comput..

[33]  David B. Roy,et al.  Statistics for citizen science: extracting signals of change from noisy ecological data , 2014 .

[34]  R. Dirzo,et al.  Defaunation in the Anthropocene , 2014, Science.

[35]  Sean C. Anderson,et al.  Observer aging and long-term avian survey data quality , 2014, Ecology and evolution.

[36]  David P. Anderson,et al.  Scientists@Home: What Drives the Quantity and Quality of Online Citizen Science Participation? , 2014, PloS one.

[37]  Jean-Michel Roberge Using data from online social networks in conservation science: which species engage people the most on Twitter? , 2014, Biodiversity and Conservation.

[38]  Arco J. van Strien,et al.  Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models , 2013 .

[39]  Michael T. Gastner,et al.  The risk of marine bioinvasion caused by global shipping. , 2013, Ecology letters.

[40]  Trisha Gura,et al.  Citizen science: Amateur experts , 2013, Nature.

[41]  D. Roy,et al.  Invasive alien predator causes rapid declines of native European ladybirds , 2012 .

[42]  Candie C. Wilderman,et al.  Public Participation in Scientific Research: a Framework for Deliberate Design , 2012 .

[43]  Mark Hill,et al.  Local frequency as a key to interpreting species occurrence data when recording effort is not known , 2012 .

[44]  Brian L. Sullivan,et al.  eBird: Engaging Birders in Science and Conservation , 2011, PLoS biology.

[45]  David N. Bonter,et al.  Citizen Science as an Ecological Research Tool: Challenges and Benefits , 2010 .

[46]  J. Ehrenfeld Ecosystem Consequences of Biological Invasions , 2010 .

[47]  Georgina M. Mace,et al.  Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data , 2010, PLoS biology.

[48]  N. Baym,et al.  Amateur experts , 2009 .

[49]  Elaine Toms,et al.  What is user engagement? A conceptual framework for defining user engagement with technology , 2008, J. Assoc. Inf. Sci. Technol..

[50]  Clément Calenge,et al.  The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals , 2006 .

[51]  F. Chapin,et al.  EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE , 2005 .

[52]  Peter Rothery,et al.  A general method for measuring relative change in range size from biological atlas data , 2002 .

[53]  Mia Hubert,et al.  Clustering in an object-oriented environment , 1997 .

[54]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[55]  David G. Delaney,et al.  Marine invasive species: validation of citizen science and implications for national monitoring networks , 2007, Biological Invasions.

[56]  S. Dolnicar,et al.  A Tale of Three Cities: Perceptual Charting for Analyzing Destination Imagess , 1998 .