Computing Delaunay Triangulation with Imprecise Input Data
暂无分享,去创建一个
[1] Joseph O'Rourke,et al. Computational Geometry in C. , 1995 .
[2] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[3] Manuel Abellanas,et al. Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..
[4] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[5] Abbas Edalat,et al. Foundation of a computable solid modelling , 2002, Theor. Comput. Sci..
[6] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[7] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[8] Anthony P. Leclerc,et al. Correct Delaunay Triangulation in the Presence of Inexact Inputs and Arithmetic , 2000, Reliab. Comput..
[9] Abbas Edalat,et al. Computability of Partial Delaunay Triangulation and Voronoi Diagram , 2002, CCA.
[10] Martin Held,et al. VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..
[11] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[12] Elham Kashefi,et al. The convex hull in a new model of computation , 2001, CCCG.