Distribution Patterns of Burned Areas in the Brazilian Biomes: An Analysis Based on Satellite Data for the 2002-2010 Period

Fires modify the structure of vegetation communities, the carbon and water cycles, the soil’s chemistry, and affect the climate system. Within this context, this work aimed to understand the distribution patterns of burned areas in Brazil, during the period of 2002 to 2010, taking into consideration each one of the six Brazilian biomes (Amazon, Caatinga, Cerrado, Atlantic Forest, Pampa and Pantanal) and the respective major land cover classes. Data from the MODIS MCD45A1 product (burned area), as well as thermal anomalies (MOD14 and MYD14) and precipitation (TRMM), were analyzed according to the 2002 Brazilian official land cover and land use map (PROBIO). The Brazilian savanna biome, known as Cerrado, presented the largest concentration of burned areas detected by MODIS (73%), followed by the Amazon (14%), Pantanal (6%), Atlantic Forest (4%), Caatinga (3%), and Pampa (0,06%) biomes. Indeed, in the years of 2007 and 2010, 90% and 92% of Brazil’s burned areas were concentrated in the Cerrado and Amazon biomes, respectively. TRMM data indicated that during these two years there was a significant influence of La Nina, causing low rainfall in the Amazon, Cerrado, Caatinga, and Atlantic Forest biomes. Regarding the land cover classes, approximately 81% of the burned areas occurred over remnant vegetation areas. Although no unequivocal correlation can be established between burned areas and new land conversions, the conspicuous concentration of fire scars, particularly in Amazon–Cerrado transition (i.e., the Arc of Deforestation) is certainly not a simple coincidence. Such patterns and trends corroborate the need of improved territorial governance, in addition to the implementation of systematic fire warning and preventive systems.

[1]  Yu Song,et al.  Comparison of L3JRC and MODIS global burned area products from 2000 to 2007 , 2009 .

[2]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[3]  J. Paruelo,et al.  Continental fire density patterns in South America , 2006 .

[4]  Alfredo Huete,et al.  A 20-year study of NDVI variability over the Northeast Region of Brazil , 2006 .

[5]  J. Assunção,et al.  Efeitos das queimadas na saúde humana , 2002 .

[6]  Ane Alencar,et al.  The economic cost of the use of fire in the Amazon , 2004 .

[7]  C. Justice,et al.  Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors , 2006 .

[8]  A. Braga,et al.  A poluição atmosférica e sua relação com a saúde humana na região canavieira de Piracicaba - SP , 2003 .

[9]  Christopher B. Field,et al.  Stomatal responses to increased CO2: implications from the plant to the global scale , 1995 .

[10]  Wendy Jepson,et al.  A disappearing biome? Reconsidering land‐cover change in the Brazilian savanna , 2005 .

[11]  Pnuma,et al.  Health guidelines for vegetation fire events: background papers , 1999 .

[12]  F. Gonzalez-Alonso,et al.  Characterising fire spatial pattern interactions with climate and vegetation in Colombia , 2011 .

[13]  Edson Eyji Sano,et al.  Mapeamento da cobertura vegetal do bioma cerrado. , 2009 .

[14]  Hongxiao Jin Drivers of global wildfires : statistical analyses , 2010 .

[15]  Marcos Adami,et al.  CANASAT PROJECT : MONITORING THE SUGARCANE HARVEST TYPE IN THE STATE OF S Ã O PAULO , BRAZIL , 2010 .

[16]  Saulo R. Freitas,et al.  Emissões de queimadas em ecossistemas da América do Sul , 2005 .

[17]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[18]  Marcos Heil Costa,et al.  Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation , 2010 .

[19]  P. Barbosa,et al.  A MODIS assessment of the summer 2007 extent burned in Greece , 2008 .

[20]  E. Davidson,et al.  Loss of Nutrients from Terrestrial Ecosystems to Streams and the Atmosphere Following Land Use Change in Amazonia , 2013 .

[21]  J. Proctor,et al.  Nature and Dynamics of Forest-Savanna Boundaries. , 1994 .

[22]  V. Pivello,et al.  A qualitative successional model to assist in the management of Brazilian cerrados , 1996 .

[23]  G. Certini Effects of fire on properties of forest soils: a review , 2005, Oecologia.

[24]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[25]  D. Ward,et al.  Fire in the Brazilian Amazon 2. Biomass, nutrient pools and losses in cattle pastures , 1998, Oecologia.

[26]  David P. Roy,et al.  Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  R. DeFries,et al.  Conservation challenge at the agricultural frontier: deforestation, fire, and land use dynamics in Mato Grosso , 2007 .

[28]  J. Randerson,et al.  Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period , 2003, Science.

[29]  Leopoldo Magno Coutinho,et al.  O conceito de bioma , 2006 .

[30]  J. R. Santos,et al.  BURNED AREA, RECURRENCE OF FIRES AND PERMANENCE OF BURNT SCARS IN SELECTED AREAS OF THE BRAZILIAN CERRADO USING TM-LANDSAT IMAGERY , 2004 .

[31]  S. Ly,et al.  What limits fire? An examination of drivers of burnt area in Southern Africa , 2008 .

[32]  R. Betts,et al.  Climate Change, Deforestation, and the Fate of the Amazon , 2008, Science.

[33]  Luiz Antonio Martinelli,et al.  Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil , 2005 .

[34]  L. Ferreira,et al.  Agriculture, habitat loss and spatial patterns of human occupation in a biodiversity hotspot , 2009 .

[35]  Carlos A. Klink,et al.  A conservação do Cerrado brasileiro , 2005 .

[36]  Daniel Alves Aguiar,et al.  Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data , 2010, Remote. Sens..

[37]  Gilberto Câmara,et al.  Long-term potential for tropical-forest degradation due to deforestation and fires in the Brazilian Amazon , 2009, Biologia.

[38]  A. Setzer,et al.  AVHRR analysis of a savanna site through a fire season in Brazil , 2001 .

[39]  D. Hatch,et al.  [Anthropogenic air pollution and respiratory disease-related emergency room visits in Rio Branco, Brazil--September, 2005]. , 2008, Jornal brasileiro de pneumologia : publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia.

[40]  C. Uhl,et al.  Abandoned pastures in eastern Amazonia. I. Patterns of plant succession , 1988 .

[41]  M. B. Ramos-Neto,et al.  Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies , 2000, Environmental management.

[42]  P. Saldiva,et al.  Queima de biomassa e efeitos sobre a saúde , 2004 .

[43]  M. Roderick,et al.  The cause of decreased pan evaporation over the past 50 years. , 2002, Science.

[44]  I. Salcedo,et al.  Biomass and nutrient dynamics associated with slash fires in neotropical dry forests , 1993 .

[45]  Manuel Eduardo Ferreira,et al.  DETECÇÃO DE DESMATAMENTOS NO BIOMA CERRADO ENTRE 2002 E 2009: PADRÕES, TENDÊNCIAS E IMPACTOS , 2012, Revista Brasileira de Cartografia.

[46]  J. A. Ratter,et al.  The Brazilian Cerrado Vegetation and Threats to its Biodiversity , 1997 .

[47]  O. Phillips,et al.  The 2010 Amazon Drought , 2011, Science.

[48]  Carlos Rogério de Mello,et al.  Potencial de sequestro de carbono em diferentes biomas do Brasil , 2010 .

[49]  B. Soares-Filho,et al.  Simulating fire regimes in the Amazon in response to climate change and deforestation. , 2011, Ecological applications : a publication of the Ecological Society of America.

[50]  DINÂMICA AGRÍCOLA E DESMATAMENTOS EM ÁREAS DE CERRADO: UMA ANALISE A PARTIR DE DADOS CENSITÁRIOS E IMAGENS DE RESOLUÇÃO MODERADA , 2009 .

[51]  J. Kauffman,et al.  Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon , 1990 .

[52]  S. Almeida,et al.  O desmatamento na Amazônia e a importância das áreas protegidas , 2005 .

[53]  Philip M. Fearnside,et al.  Wood density in forests of Brazil's 'arc of deforestation': Implications for biomass and flux of carbon from land-use change in Amazonia , 2007 .

[54]  C. Nobre,et al.  The Drought of Amazonia in 2005 , 2008 .

[55]  V. Pivello,et al.  Transfer of macro-nutrients to the atmosphere during experimental burnings in an open cerrado (Brazilian savanna) , 1992, Journal of Tropical Ecology.

[56]  Helena Ribeiro Queimadas de cana-de-açúcar no Brasil: efeitos à saúde respiratória , 2008 .

[57]  P. Fearnside Desmatamento na Amazônia brasileira: história, índices e conseqüências , 2005 .

[58]  D. Roy,et al.  The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product , 2008 .

[59]  V. Ramanathan,et al.  Global and regional climate changes due to black carbon , 2008 .

[60]  F. Woodward,et al.  The global distribution of ecosystems in a world without fire. , 2004, The New phytologist.

[61]  R. F. Hughes,et al.  Fire in the Brazilian Amazon , 2000, Oecologia.

[62]  K. Shadan,et al.  Available online: , 2012 .