Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites

Processable composites of single-walled carbon nanotubes (SWNTs) with soluble cross-linked polyurethane (SCPU) were prepared at various loadings of SWNTs (0−25 wt %), and they exhibited strong microwave absorption in the microwave range of 2−18 GHz. For example, 5 wt % loading SWNTs/SCPU composite has a strong absorbing peak at 8.8 GHz and achieves a maximum absorbing value of 22 dB. The absorbing peak position moves to lower frequencies with increasing SWNT loading. Theoretical simulation for the microwave absorption using the transmission line theory agrees well with the experimental results. The microwave absorption of these composites can be mainly attributed to the dielectric loss rather than magnetic loss.

[1]  A. Wadhawan,et al.  Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes , 2003 .

[2]  Snyder,et al.  Geometrical percolation threshold of overlapping ellipsoids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Yongsheng Chen,et al.  The synthesis of single-walled carbon nanotubes with controlled length and bundle size using the electric arc method , 2006 .

[4]  Mool C. Gupta,et al.  Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. , 2005, Nano letters.

[5]  Jae-Hung Han,et al.  Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures , 2006 .

[6]  J. M. Kikkawa,et al.  Very Low Conductivity Threshold in Bulk Isotropic Single‐Walled Carbon Nanotube–Epoxy Composites , 2005 .

[7]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[8]  Obukhov Sp First order rigidity transition in random rod networks. , 1995 .

[9]  M. S. Dresselhaus,et al.  Applied physics: Nanotube antennas , 2004, Nature.

[10]  D. Chung Electromagnetic interference shielding effectiveness of carbon materials , 2001 .

[11]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[12]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[13]  Bumsuk Kim,et al.  Electrical properties of single-wall carbon nanotube and epoxy composites , 2003 .

[14]  S. Mendiratta,et al.  Electrical and dielectrical properties of the percolating system polystyrene/polypyrrole particles , 2002 .

[15]  Hsu-Chiang Kuan,et al.  Preparation and electromagnetic interference shielding characteristics of novel carbon‐nanotube/siloxane/poly‐(urea urethane) nanocomposites , 2005 .

[16]  K. G. Ong,et al.  Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes , 2001 .

[17]  Oren Regev,et al.  Toolbox for Dispersing Carbon Nanotubes into Polymers To Get Conductive Nanocomposites , 2006 .

[18]  Qing Chen,et al.  Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes , 2004 .

[19]  R. Dendievel,et al.  Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties , 2005 .

[20]  Z. Dang,et al.  Carbon nanotube composites with high dielectric constant at low percolation threshold , 2005 .

[21]  R. Lawrence,et al.  Conductive Carbon Nanofiber–Polymer Foam Structures , 2005 .

[22]  Munson-McGee,et al.  Estimation of the critical concentration in an anisotropic percolation network. , 1991, Physical review. B, Condensed matter.

[23]  P. Watts,et al.  High Permittivity from Defective Multiwalled Carbon Nanotubes in the X‐Band , 2003 .

[24]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[25]  Ling Bing Kong,et al.  High microwave permittivity of multiwalled carbon nanotube composites , 2004 .

[26]  Y. J. Chen,et al.  Microwave absorption properties of the ZnO nanowire-polyester composites , 2004 .

[27]  Xing-Wei Sun,et al.  Microwave attenuation of multiwalled carbon nanotube-fused silica composites , 2005 .

[28]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[29]  Pierre Legagneux,et al.  Achieving high-current carbon nanotube emitters. , 2005, Nano letters.

[30]  Dusan A. Pejakovic,et al.  Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst , 2004 .

[31]  F. Wei,et al.  Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites , 2006 .

[32]  Yang Liu,et al.  Microwave absorption properties of the carbon-coated nickel nanocapsules , 2006 .

[33]  Yongsheng Chen,et al.  Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites , 2007 .

[34]  Huahui He,et al.  Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites , 2000 .

[35]  R. Mittra,et al.  Design of lightweight, broad-band microwave absorbers using genetic algorithms , 1993 .

[36]  Zunfeng Liu,et al.  Preparation and Size Determination of a Soluble Cross-Linked Macromolecule of Polyurethane with an Ethylene Diamine Chain Extender , 2005 .

[37]  D. Chung,et al.  Electromagnetic interference shielding by carbon-fibre-reinforced cement , 1989 .

[38]  Chunyi Zhi,et al.  Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite , 2006 .

[39]  P. Watts,et al.  The complex permittivity of multi-walled carbon nanotube–polystyrene composite films in X-band , 2003 .

[40]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[41]  Arthur J. Epstein,et al.  Electromagnetic radiation shielding by intrinsically conducting polymers , 1994 .

[42]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.