Effects of intraborehole flow on groundwater age distribution

Environmental tracers are used to estimate groundwater ages and travel times, but the strongly heterogeneous nature of many subsurface environments can cause mixing between waters of highly disparate ages, adding additional complexity to the age-estimation process. Mixing may be exacerbated by the presence of wells because long open intervals or long screens with openings at multiple depths can transport water and solutes rapidly over a large vertical distance. The effect of intraborehole flow on groundwater age was examined numerically using direct age transport simulation coupled with the Multi-Node Well Package of MODFLOW. Ages in a homogeneous, anisotropic aquifer reached a predevelopment steady state possessing strong depth dependence. A nonpumping multi-node well was then introduced in one of three locations within the system. In all three cases, vertical transport along the well resulted in substantial changes in age distributions within the system. After a pumping well was added near the nonpumping multi-node well, ages were further perturbed by a flow reversal in the nonpumping multi-node well. Results indicated that intraborehole flow can substantially alter groundwater ages, but the effects are highly dependent on local or regional flow conditions and may change with time.RésuméLes traceurs environnementaux sont habituellement utilisés pour estimer les âges des eaux souterraines et les temps de résidence. Cependant, la nature hautement hétérogène de nombreux environnements souterrains peut engendrer des mélanges entre des eaux d’âges très disparates, complexifiant par-là même le processus d’estimation des âges. La présence de puits peut exacerber le phénomène de mélange : de longues sections en trou nu ou crépinées exploitant plusieurs niveaux productifs distincts peuvent transporter rapidement l’eau et les solutés sur une grande distance verticale. Les conséquences de flux intra-forages sur les ages des eaux souterraines ont été étudiées numériquement en couplant les simulations directes de temps de résidence avec le “Multi-Node Well Package” de MODFLOW. Dans un aquifère homogène et anisotrope, les âges ont atteint un régime permanent étroitement dépendant de la profondeur. Un puits multinœud au repos a ensuite été inséré dans l’une des trois zones du système. Dans les trois cas, les transports verticaux par le puits ont entraîné des modifications substantielles des distributions des âges dans le système. Enfin, après ajout d’un puits en pompage à proximité du puits au repos, les âges ont été perturbé davantage, par une inversion du flux dans le puits au repos. Les résultats ont montré que les flux intra-forages peuvent modifier substantiellement les âges des eaux souterraines, mais leurs effets sont hautement dépendants des conditions locales ou régionales d’écoulement, et peuvent de surcroît changer dans le temps.ResumenLos trazadores ambientales pueden usarse para estimar el tiempo de viaje y las edades del agua subterránea pero la naturaleza fuertemente heterogénea de muchos ambientes subsuperficiales puede causar mezcla entre aguas de edades altamente dispares, añadiendo complejidad adicional al proceso de estimación de edades. La mezcla puede exacerbarse por la presencia de pozos debido a que intervalos largos abiertos o mallas largas con aberturas a profundidades múltiples pueden transportar agua y solutos rápidamente a lo largo de grandes distancias verticales. Se examinó numéricamente el efecto de flujo entre pozos en la edad del agua subterránea usando la simulación de transporte de edades directa acompañada con el Paquete de Pozos Multi-Nodo de MODFLOW. Las edades en un acuífero anisotrópico y homogéneo alcanzaron un régimen de predesarrollo permanente con fuerte dependencia de la profundidad. Luego se introdujo un sistema de pozos multi-nodo sin bombeo en uno de tres lugares dentro del sistema. En todos los tres casos, el transporte vertical a lo largo del pozo dio por resultado cambios substanciales en las distribuciones de edad dentro del sistema. Después de que se añadió un pozo de bombeo cerca del pozo multi-nodo sin bombeo se perturbaron las edades aún más por inversión del flujo en el pozo multi-nodo sin bombeo. Los resultados indican que el flujo entre los pozos puede alterar substancialmente las edades del agua subterránea pero que los efectos son altamente dependientes en las condiciones de flujo regional o local y pueden cambiar con el tiempo.

[1]  C. Axness,et al.  Three‐dimensional stochastic analysis of macrodispersion in aquifers , 1983 .

[2]  O. Lehn Franke,et al.  Bias in Groundwater Samples Caused by Wellbore Flow , 1989 .

[3]  Charles F. Harvey,et al.  When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields , 2003 .

[4]  S. P. Neuman,et al.  Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms , 1999 .

[5]  L. N. Plummer,et al.  Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age‐dating tools: The alluvium and terrace system of central Oklahoma , 1992 .

[6]  Randall T. Hanson,et al.  User guide for the drawdown-limited, multi-node well (MNW) package for the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model, versions MODFLOW-96 and MODFLOW-2000 , 2002 .

[7]  Gaisheng Liu,et al.  Limits of applicability of the advection‐dispersion model in aquifers containing connected high‐conductivity channels , 2004 .

[8]  Leonard F Konikow,et al.  Modeling effects of multinode wells on solute transport. , 2006, Ground water.

[9]  Graham E. Fogg,et al.  Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System , 2001 .

[10]  Brian Berkowitz,et al.  Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .

[11]  G. Marsily,et al.  Noble gases as natural tracers of water circulation in the Paris Basin: 2. Calibration of a groundwater flow model using noble gas isotope data , 1998 .

[12]  G. Z. Hornberger,et al.  Use of boundary fluxes when simulating solute transport with the MODFLOW ground-water transport process , 2003 .

[13]  Gregory E. Granato,et al.  Bias in ground-water data caused by well-bore flow in long-screen wells , 1996 .

[14]  L. N. Plummer,et al.  Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model , 2004 .

[15]  G. Z. Hornberger,et al.  A three-dimensional method-of-characteristics solute-transport model (MOC3D) , 1996 .

[16]  D. Freyberg,et al.  On using the equivalent conductivity to characterize solute spreading in environments with low‐permeability lenses , 2002 .

[17]  T. F. Russell,et al.  A three-dimensional finite-volume Eulerian-Lagrangian Localized Adjoint Method (ELLAM) for solute-transport modeling , 2000 .

[18]  W. Sanford Correcting for Diffusion in Carbon‐14 Dating of Ground Water , 1997 .

[19]  E. Frind,et al.  Simulation of contaminant transport in three dimensions: 2. Dimensionality effects , 1987 .

[20]  Sean Andrew McKenna,et al.  On the late‐time behavior of tracer test breakthrough curves , 2000 .

[21]  Leonard F. Konikow,et al.  An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model , 1998 .

[22]  S. Gorelick,et al.  Multiple‐Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media with Pore‐Scale Heterogeneity , 1995 .

[23]  G. Z. Hornberger,et al.  Use of the Multi-Node Well (MNW) package when simulating solute transport with the MODFLOW ground-water transport process , 2006 .

[24]  Daniel J. Goode Age, double porosity, and simple reaction modifications for the MOC3D ground-water transport model , 1999 .

[25]  Roy Haggerty,et al.  Experimental visualization of solute transport and mass transfer processes in two-dimensional conductivity fields with connected regions of high conductivity. , 2004, Environmental science & technology.

[27]  Mark N. Goltz,et al.  Using the method of moments to analyze three-dimensional diffusion-limited solute transport from tem , 1987 .

[28]  G. Fogg,et al.  Dispersion of groundwater age in an alluvial aquifer system , 2002 .

[29]  N. Plummer,et al.  Tracing and Dating Young Ground Water , 1999 .

[30]  D. LeBlanc,et al.  Characterizing a Sewage Plume Using the 3H‐3He Dating Technique , 1999 .

[31]  David Andrew Barry,et al.  Mass transfer in soils with local stratification of hydraulic conductivity , 1994 .

[32]  T. Johnson,et al.  Paradox of groundwater age: Correction1 , 2002 .

[33]  E. A. Sudicky,et al.  Influence of Leaky Boreholes on Cross‐Formational Groundwater Flow and Contaminant Transport , 1995 .

[34]  M. Becker,et al.  Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing , 2000 .

[35]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .