A multiobjective approach for optimizing electrooptic modulators

This work presents preliminary results of a multiobjective approach for optimization of some design parameters of Mach-Zehnder-based lithium niobate modulators. This process uses a genetic algorithm to iteratively refine candidate sets of parameters and the characterization of the modulators is performed by the Finite Element Method. Test cases include optimization of a conventional Mach-Zehnder modulator and a variation of this kind of device using additional floating electrodes. The set of characteristics include parameters such as Zc, Nm and VpiL.

[1]  C. White,et al.  Ridged LiNbO/sub 3/ modulators fabricated by a novel oxygen-ion implant/wet-etch technique , 2004, Journal of Lightwave Technology.

[2]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[4]  Marcos A. R. Franco,et al.  A design study of a Ti:LiNbO/sub 3/ traveling-wave electrooptic modulator by the finite element method , 1999, 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference.

[5]  Marcos A. R. Franco,et al.  Finite element analysis of anisotropic optical waveguide with arbitrary index profile , 1999 .

[6]  F. Koyama,et al.  Frequency chirping in external modulators , 1988 .

[7]  B. M. A. Rahman,et al.  Optimization of microwave properties for ultrahigh-speed etched and unetched lithium niobate electrooptic modulators , 2002 .

[8]  Y. Shani,et al.  A novel, wideband, lithium niobate electrooptic modulator , 1998 .

[9]  Ivo Montrosset,et al.  Guided modes of Ti:LiNbO/sub 3/ channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method , 1988 .

[10]  Gary G. Yen,et al.  Multiobjective optimization design via genetic algorithm , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).