Remote assessment of pre- And post-disaster critical physical infrastructures using mobile workstation chariot and D4AR models

This paper presents a new technology and a systematic approach for disaster response and recovery of Critical Physical Infrastructures (CPIs). Our suggested approach is based on using a Mobile Workstation Chariot (MWC) assembled on Segway personal transporter which supports both horizontal and vertical real-time visual data capture and transmission flow, first responders and civil engineers can quickly traverse hazardous terrain, collect and transmit photographs/videos, and communicate with the command center in real-time. Using MWC wireless communication tools, first responders and civil engineers can access disaster-survivable black boxes allowing Building Information Models (BIM), pre-disaster photographs and operational information of buildings to be collected and communicated back to the command center. Finally at the command center, using sensed visual data and image-based reconstruction techniques, the post-disaster site is reconstructed in 3D. The resulting integrated representation of the post-disaster model and the collected photographs are superimposed over the pre-disaster BIM to generate a 4D Augmented Reality (DAR) model. By integrated representation of pre-disaster and post-disaster information, the DAR allows damages, safety and stability of the CPIs as well as possible rescue operation routings and plans to be assessed. Critical information for disaster response and recovery can be analyzed and communicated back to the field easily and quickly. We present preliminary results of our experiments for collecting, analyzing, and visualizing sensed data using the MWC as well as the DAR. These results demonstrate a great potential for application of MWC and DAR for disaster response and recovery operations. The limitation and benefits of this approach plus further required developments are discussed.