On the spectral radius of graphs without a star forest

Abstract Let F = ∪ i = 1 k S d i be the union of pairwise vertex-disjoint k stars of order d 1 + 1 , … , d k + 1 , respectively, where k ≥ 2 and d 1 ≥ ⋯ ≥ d k ≥ 1 . In this paper, we present two sharp upper bounds for the spectral radius of F -free (bipartite) graphs and characterize all corresponding extremal graphs. Moreover, the minimum least eigenvalue of the adjacency matrix of an F -free graph and all extremal graphs are obtained.

[1]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[2]  Vladimir Nikiforov,et al.  Bounds on graph eigenvalues II , 2006, math/0612461.

[3]  Xiaodong Zhang,et al.  The signless Laplacian spectral radius of graphs with forbidding linear forests , 2020, 2007.08627.

[4]  Michael Tait,et al.  The Maximum Spectral Radius of Graphs Without Friendship Subgraphs , 2020, Electron. J. Comb..

[5]  Shmuel Friedland,et al.  On the First Eigenvalue of Bipartite Graphs , 2008, Electron. J. Comb..

[6]  Xiaodong Zhang,et al.  The spectral radius of graphs with no intersecting triangles , 2019, 1911.13082.

[7]  Xiao-Dong Zhang,et al.  Erdős-Gallai stability theorem for linear forests , 2019, Discret. Math..

[8]  Odile Favaron,et al.  Some eigenvalue properties in graphs (conjectures of Graffiti - II) , 1993, Discret. Math..

[9]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[10]  Xiaodong Zhang,et al.  On the signless Laplacian spectral radius of Ks,t -minor free graphs , 2019, Linear and Multilinear Algebra.

[11]  Yongtang Shi,et al.  Degree powers in graphs with a forbidden forest , 2018, Discret. Math..

[12]  B. Wang,et al.  Proof of a conjecture on the spectral radius of C4-free graphs , 2012 .

[13]  Xiao-Dong Zhang,et al.  Spectral Extremal Results with Forbidding Linear Forests , 2018, Graphs Comb..

[14]  Michael Tait,et al.  Three conjectures in extremal spectral graph theory , 2016, J. Comb. Theory, Ser. B.

[15]  Yongtang Shi,et al.  The Turán number of star forests , 2019, Appl. Math. Comput..

[16]  Michael Tait,et al.  The Colin de Verdière parameter, excluded minors, and the spectral radius , 2017, J. Comb. Theory, Ser. A.

[17]  Xinmin Hou,et al.  The spectral radius of graphs without long cycles , 2017, Linear Algebra and its Applications.

[18]  Jian-Hua Yin,et al.  On Turán number for Sℓ1∪Sℓ2 , 2020, Appl. Math. Comput..

[19]  Xiao-Dong Zhang,et al.  The Turán number of disjoint copies of paths , 2017, Discret. Math..

[20]  V. Nikiforov Bounds on graph eigenvalues I , 2006, math/0602027.

[21]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[22]  Lihua Feng,et al.  The Laplacian spectral radius of graphs with given matching number , 2007, Ars Comb..

[23]  Jian-Hua Yin,et al.  Two results about the Turán number of star forests , 2020, Discret. Math..

[24]  L. Lovász,et al.  The Colin de Verdière parameter , 1999 .

[25]  L. Lovász,et al.  On the eigenvalues of trees , 1973 .

[26]  Hong Liu,et al.  On the Turán Number of Forests , 2012, Electron. J. Comb..

[27]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.