A modeling and filtering framework for linear differential-algebraic equations

General approaches to modeling, for instance using object-oriented software, lead to differential-algebraic equations (DAE). As the name reveals, it is a combination of differential and algebraic equations. For state estimation using observed system inputs and outputs in a stochastic framework similar to Kalman filtering, we need to augment the DAE with stochastic disturbances ("process noise"), whose covariance matrix becomes the tuning parameter. We will determine the subspace of possible causal disturbances based on the linear DAE model. This subspace determines all degrees of freedom in the filter design, and a Kalman filter algorithm is given. We illustrate the design on a system with two interconnected rotating masses.

[1]  Zi-Li Deng,et al.  Descriptor Kalman estimators , 1999, Int. J. Syst. Sci..

[2]  L. Dai Filtering and LQG problems for discrete-time stochastic singular systems , 1989 .

[3]  Michael Tiller,et al.  Introduction to Physical Modeling with Modelica , 2001 .

[4]  R. Winkler Stochastic differential algebraic equations of index 1 and applications in circuit simulation , 2003 .

[5]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[6]  Liyi Dai,et al.  State Estimation Schemes for Singular Systems , 1987 .

[7]  Stephen L. Campbell,et al.  Descriptor systems in the 1990s , 1990, 29th IEEE Conference on Decision and Control.

[8]  F. Ashcroft,et al.  VIII. References , 1955 .

[9]  G. Denk,et al.  Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits , 1998 .

[10]  L. Ljung,et al.  Control theory : multivariable and nonlinear methods , 2000 .

[11]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[12]  François Delebecque,et al.  Kalman filtering for general discrete-time linear systems , 1999, IEEE Trans. Autom. Control..

[13]  Thomas Kailath,et al.  Linear Systems , 1980 .

[14]  Hilding Elmqvist,et al.  Physical system modeling with Modelica , 1998 .

[15]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[16]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[17]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[18]  Mohamed Darouach,et al.  State estimation of stochastic singular linear systems , 1993 .

[19]  Lennart Ljung,et al.  Parameter Estimation in Linear Differential-Algebraic Equations , 2003 .

[20]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[21]  Thomas B. Schön,et al.  A note on state estimation as a convex optimization problem , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[22]  François Delebecque,et al.  Kalman filtering for general discrete-time LTI systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[23]  Andras Varga NUMERICAL ALGORITHMS AND SOFTWARE TOOLS FOR ANALYSIS AND MODELLING OF DESCRIPTOR SYSTEMS , 1992 .