Mechanical regulation of lithium intrusion probability in garnet solid electrolytes

[1]  Christos E. Athanasiou,et al.  Controlling dendrite propagation in solid-state batteries with engineered stress , 2022, Joule.

[2]  Chaoyang Wang,et al.  Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries , 2022, Journal of Power Sources.

[3]  Dianlong Wang,et al.  Suppressing lithium dendrites within inorganic solid-state electrolytes , 2021, Cell Reports Physical Science.

[4]  G. Ceder,et al.  Understanding metal propagation in solid electrolytes due to mixed ionic-electronic conduction , 2021, Matter.

[5]  Yongfu Tang,et al.  In situ Observation of Li Deposition‐Induced Cracking in Garnet Solid Electrolytes , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[6]  J. Janek,et al.  Operando analysis of the molten Li|LLZO interface: Understanding how the physical properties of Li affect the critical current density , 2021 .

[7]  Zachary D. Hood,et al.  Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes , 2021, Nature Materials.

[8]  G. Yin,et al.  Dendrites in Solid‐State Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation , 2021, Advanced Energy Materials.

[9]  Y. Chiang,et al.  Publisher Correction: Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries , 2021, Nature Energy.

[10]  Chen‐Zi Zhao,et al.  Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies , 2021, Advanced Functional Materials.

[11]  C. Ban,et al.  A New General Paradigm for Understanding and Preventing Li Metal Penetration through Solid Electrolytes , 2020 .

[12]  K. Zaghib,et al.  Direct observation of lithium metal dendrites with ceramic solid electrolyte , 2020, Scientific Reports.

[13]  Xiulin Fan,et al.  Solid‐State Electrolyte Design for Lithium Dendrite Suppression , 2020, Advanced materials.

[14]  Hongli Zhu,et al.  Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations , 2020 .

[15]  J. Janek,et al.  The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnet‐Type Solid Electrolyte Li6.25Al0.25La3Zr2O12 , 2020, Advanced Energy Materials.

[16]  Asma Sharafi,et al.  Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility , 2020, Matter.

[17]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[18]  G. Ceder,et al.  An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects , 2020, Journal of The Electrochemical Society.

[19]  B. Helms,et al.  Universal Chemomechanical Design Rules for Solid-Ion Conductors to Prevent Dendrite Formation in Lithium Metal Batteries. , 2019, 1901.04910.

[20]  I. Chen,et al.  Potential jumps at transport bottlenecks cause instability of nominally ionic solid electrolytes in electrochemical cells , 2018, 1812.05187.

[21]  H. Duan,et al.  Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling , 2019, Advanced Functional Materials.

[22]  R. McMeeking,et al.  Dendritic cracking in solid electrolytes driven by lithium insertion , 2019 .

[23]  G. Bucci,et al.  Modeling of lithium electrodeposition at the lithium/ceramic electrolyte interface: The role of interfacial resistance and surface defects , 2019, Journal of Power Sources.

[24]  Gurmukh K. Sethi,et al.  Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes , 2019, Front. Energy Res..

[25]  Long-Qing Chen,et al.  Interfacial Electronic Properties Dictate Li Dendrite Growth in Solid Electrolytes , 2019, Chemistry of Materials.

[26]  Felix H. Richter,et al.  Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes , 2019, Joule.

[27]  Francisco Javier Quintero Cortes,et al.  Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte , 2019, ACS Energy Letters.

[28]  Y. Ikuhara,et al.  Direct observation of atomic-scale fracture path within ceramic grain boundary core , 2019, Nature Communications.

[29]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[30]  J. Malzbender,et al.  An investigation on strength distribution, subcritical crack growth and lifetime of the lithium-ion conductor Li7La3Zr2O12 , 2019, Journal of Materials Science.

[31]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.

[32]  Y. Chiang,et al.  Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li6La3ZrTaO12 Garnet , 2018, 1808.02105.

[33]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[34]  K. Adepalli,et al.  Tunable Oxygen Diffusion and Electronic Conduction in SrTiO3 by Dislocation‐Induced Space Charge Fields , 2017 .

[35]  Frank W. Zok,et al.  On weakest link theory and Weibull statistics , 2017 .

[36]  M. Rieth,et al.  Ductilisation of tungsten (W): On the increase of strength AND room-temperature tensile ductility through cold-rolling , 2017 .

[37]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[38]  J. Sakamoto,et al.  In-situ, non-destructive acoustic characterization of solid state electrolyte cells , 2016 .

[39]  Donald J. Siegel,et al.  Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .

[40]  J. Sakamoto,et al.  Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet , 2012, Journal of Materials Science.

[41]  J. LaSalvia,et al.  Knoop Hardness–Apparent Yield Stress Relationship in Ceramics , 2011 .

[42]  J. Quinn,et al.  A practical and systematic review of Weibull statistics for reporting strengths of dental materials. , 2010, Dental materials : official publication of the Academy of Dental Materials.

[43]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[44]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[45]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[46]  Ernest Y. Wu,et al.  On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination. Part I: theory, methodology, experimental techniques , 2002 .

[47]  Y. Mai,et al.  Scratch deformation behaviour of alumina under a sharp indenter , 1997 .

[48]  L. C. Jonghe,et al.  Initiation of mode I degradation in sodium-beta alumina electrolytes , 1982 .

[49]  L. C. Jonghe,et al.  Slow degradation and electron conduction in sodium/beta-aluminas , 1981 .

[50]  Michael V. Swain,et al.  Microfracture about scratches in brittle solids , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.