IMEX extensions of linear multistep methods with general monotonicity and boundedness properties

For solving hyperbolic systems with stiff sources or relaxation terms, time stepping methods should combine favorable monotonicity properties for shocks and steep solution gradients with good stability properties for stiff terms. In this paper we consider implicit-explicit (IMEX) multistep methods. Suitable methods will be constructed, based on explicit methods with general monotonicity and boundedness properties for hyperbolic equations. Numerical comparisons are made with several implicit-explicit Runge-Kutta methods.

[1]  Michael L. Minion,et al.  Implications of the Choice of Quadrature Nodes for Picard Integral Deferred Corrections Methods for Ordinary Differential Equations , 2005 .

[2]  J. Varah Stability Restrictions on Second Order, Three Level Finite Difference Schemes for Parabolic Equations , 1978 .

[3]  C. Lubich,et al.  Runge-Kutta approximation of quasi-linear parabolic equations , 1995 .

[4]  Willem Hundsdorfer,et al.  On monotonicity and boundedness properties of linear multistep methods , 2006, Math. Comput..

[5]  Steven J. Ruuth,et al.  Implicit-Explicit Methods for Time-Dependent PDE''s , 1993 .

[6]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[7]  Chi-Wang Shu,et al.  High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .

[8]  Willem Hundsdorfer,et al.  Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..

[9]  Thor Gjesdal Implicit--explicit methods based on strong stability preserving multistep time discretizations , 2003 .

[10]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[11]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[12]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[13]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[14]  Willem Hundsdorfer,et al.  High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .

[15]  Michael L. Minion,et al.  Semi-implicit projection methods for incompressible flow based on spectral deferred corrections , 2004 .

[16]  Michel Crouzeix,et al.  Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques , 1980 .

[17]  G. Russo,et al.  High Order Asymptotically Strong-Stability-Preserving Methods for Hyperbolic Systems with Stiff Relaxation , 2003 .

[18]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[19]  Charalambos Makridakis,et al.  Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.

[20]  Dong Wang,et al.  VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS * , 2008 .

[21]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[22]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[23]  V. Thomée,et al.  Single step methods for inhomogeneous linear differential equations in Banach space , 1982 .

[24]  E. Tadmor,et al.  Hyperbolic Problems: Theory, Numerics, Applications , 2003 .

[25]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[26]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[27]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[28]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[29]  H. Lenferink,et al.  Contractivity preserving explicit linear multistep methods , 1989 .

[30]  O. Nevanlinna,et al.  Stability of explicit time discretizations for solving initial value problems , 1982 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[33]  M. N. Spijker,et al.  Computing optimal monotonicity-preserving Runge-Kutta methods , 2022 .

[34]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[35]  Alexander Ostermann,et al.  Interior estimates for time discretizations of parabolic equations , 1995 .

[36]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .