IMEX extensions of linear multistep methods with general monotonicity and boundedness properties
暂无分享,去创建一个
[1] Michael L. Minion,et al. Implications of the Choice of Quadrature Nodes for Picard Integral Deferred Corrections Methods for Ordinary Differential Equations , 2005 .
[2] J. Varah. Stability Restrictions on Second Order, Three Level Finite Difference Schemes for Parabolic Equations , 1978 .
[3] C. Lubich,et al. Runge-Kutta approximation of quasi-linear parabolic equations , 1995 .
[4] Willem Hundsdorfer,et al. On monotonicity and boundedness properties of linear multistep methods , 2006, Math. Comput..
[5] Steven J. Ruuth,et al. Implicit-Explicit Methods for Time-Dependent PDE''s , 1993 .
[6] Inmaculada Higueras,et al. Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..
[7] Chi-Wang Shu,et al. High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .
[8] Willem Hundsdorfer,et al. Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..
[9] Thor Gjesdal. Implicit--explicit methods based on strong stability preserving multistep time discretizations , 2003 .
[10] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[11] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[12] Willem Hundsdorfer,et al. Stability of implicit-explicit linear multistep methods , 1997 .
[13] G. Russo,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .
[14] Willem Hundsdorfer,et al. High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .
[15] Michael L. Minion,et al. Semi-implicit projection methods for incompressible flow based on spectral deferred corrections , 2004 .
[16] Michel Crouzeix,et al. Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques , 1980 .
[17] G. Russo,et al. High Order Asymptotically Strong-Stability-Preserving Methods for Hyperbolic Systems with Stiff Relaxation , 2003 .
[18] SEBASTIANO BOSCARINO. Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..
[19] Charalambos Makridakis,et al. Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.
[20] Dong Wang,et al. VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS * , 2008 .
[21] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[22] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[23] V. Thomée,et al. Single step methods for inhomogeneous linear differential equations in Banach space , 1982 .
[24] E. Tadmor,et al. Hyperbolic Problems: Theory, Numerics, Applications , 2003 .
[25] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[26] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[27] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[28] M. Calvo,et al. Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .
[29] H. Lenferink,et al. Contractivity preserving explicit linear multistep methods , 1989 .
[30] O. Nevanlinna,et al. Stability of explicit time discretizations for solving initial value problems , 1982 .
[31] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[32] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[33] M. N. Spijker,et al. Computing optimal monotonicity-preserving Runge-Kutta methods , 2022 .
[34] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[35] Alexander Ostermann,et al. Interior estimates for time discretizations of parabolic equations , 1995 .
[36] M. Minion. Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .