Coating and near‐surface modification design strategies for protective and functional surfaces

This paper discusses strategies for controlling the surface chemistry and microstructure of materials to form protective and functional surfaces through controlled gas-metal reactions. Potential applications range from oxidation, corrosion, and wear resistance to electrochemical devices such as fuel cells to catalysts. Phenomenological examples are presented for coatings designed to self-grade under oxidizing conditions, and for the growth of simple and complex (binaryand ternary) nitride and carbide phase surface layers by nitridation and carburization reactions. Specific systems discussed include environmental barrier coatings (EBCs) for Si-based ceramics such as Si 3 N 4 and SiC, the growth of continuous, protective CrN/Cr2N, TiN, VN, NiNbVN, and related simple nitride layers on Fe- and Ni-base alloys, the possible formation of ternary nitride and carbide surface phases (e.g. Ti3AlC2 and related MAX-phases) on intermetallic surfaces to improve oxidation resistance, and the formation of composite near-surface structures in Ag-SiO 2 and Co(Mo)-Co6Mo6C2 systems.

[1]  C. Zawodzinski,et al.  Assessment of thermal nitridation to protect metal bipolar plates in polymer electrolyte membrane fuel cells , 2002 .

[2]  E. A. Payzant,et al.  Templated growth of a complex nitride island dispersion through an internal nitridation reaction , 2001 .

[3]  John R. Nicholls,et al.  Advances in Coating Design for High-Performance Gas Turbines , 2003 .

[4]  A. Seitsonen,et al.  Oxidation of Metal Surfaces , 2002, Science.

[5]  Prashant N. Kumta,et al.  Synthesis of ternary transition metal nitrides using chemically complexed precursors , 1996 .

[6]  Heli Wang,et al.  Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells , 2003 .

[7]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[8]  E. Williams,et al.  Autocatalytic oxidation of lead crystallite surfaces. , 2002, Science.

[9]  J. Smialek,et al.  Effects of Diffusion on Aluminum Depletion and Degradation of NiAl Coatings , 1974 .

[10]  P. Pérez,et al.  Improvement of Oxidation Behavior of a Ti–48Al–2Cr Alloy by a Nitridation Treatment , 2001 .

[11]  E. A. Payzant,et al.  Synthesis of ternary nitrides from intermetallic precursors: Modes of nitridation in model Cr3Pt alloys to form Cr3PtN antiperovskite and application to other systems , 2004 .

[12]  Karren L. More,et al.  Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates Part 2: Beneficial modification of passive layer on AISI446 , 2004 .

[13]  R. Borup,et al.  Design and Testing Criteria for Bipolar Plate Materials for Pem Fuel Cell Applications , 1995 .

[14]  K. Aika,et al.  Molybdenum nitride and carbide catalysts for ammonia synthesis , 2001 .

[15]  P. Verdier,et al.  Nitrides and oxynitrides: Preparation, crystal chemistry and properties , 1991 .

[16]  Yanchun Zhou,et al.  Oxidation behavior of Ti3AlC2 at 1000–1400 °C in air , 2003 .

[17]  Paul Leonard Adcock,et al.  Bipolar plate materials for solid polymer fuel cells , 2000 .

[18]  E. Opila,et al.  Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments , 2004 .

[19]  Fazil Erdogan Fracture mechanics of functionally graded materials , 1995 .

[20]  Jooho Moon,et al.  Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique , 1999 .

[21]  Scott D. Korlann,et al.  Synthesis of Bulk and Alumina-Supported Bimetallic Carbide and Nitride Catalysts , 2002 .

[22]  M. Inoue,et al.  NOVEL REACTIVE PLASMA PROCESSING FOR TRANSFORMING SURFACES OF METALS AND INTERMETALLICS TO CERAMICS , 2002 .

[23]  S. H. Elder,et al.  LiMoN2: The First Metallic Layered Nitride , 1992 .

[24]  J. Morral,et al.  Interdiffusion and coating design , 1990 .

[25]  M. Sundberg,et al.  Alumina forming high temperature silicides and carbides , 2004 .

[26]  Karren L. More,et al.  Effects of High Water‐Vapor Pressure on Oxidation of Silicon Carbide at 1200°C , 2003 .

[27]  Masayuki Niino,et al.  Recent development status of functionally gradient materials. , 1990 .

[28]  D. Clarke,et al.  Measurement of the stress in oxide scales formed by oxidation of alumina-forming alloys , 1996 .

[29]  I. Wright,et al.  Alloy design strategies for promoting protective oxide-scale formation , 2000 .

[30]  Dong Ju Moon,et al.  Molybdenum carbide catalysts for water–gas shift , 2000 .

[31]  M. Brady,et al.  Alloy Design of Intermetallics for Protective Scale Formation and for Use as Precursors for Complex Ceramic Phase Surfaces , 2004 .

[32]  T. Narita,et al.  Sulfidation processing and Cr addition to improve oxidation resistance of TiAl intermetallics in air at 1173 K , 2000 .

[33]  Yanfei Zhou,et al.  High-Temperature Oxidation Behavior of Ti2AlC in Air , 2003 .

[34]  Jing Chen,et al.  Supported Bimetallic Nb−Mo Carbide: Synthesis, Characterization, and Reactivity , 2000 .

[35]  Frank A. de Bruijn,et al.  Stainless steel for cost-competitive bipolar plates in PEMFCs , 2000 .

[36]  W. Brandl,et al.  Corrosion behaviour of hybrid coatings , 1996 .

[37]  R. P. Rubly,et al.  Internal nitridation of nickel-chromium alloys , 1991 .

[38]  W. Möller,et al.  Microalloying effects in the oxidation of TiAl materials , 1999 .

[39]  M. Weaver,et al.  Feasibility assessment of self-grading metallic bond coat alloys for EBCs/TBCs to protect Si-based ceramics , 2005 .

[40]  W. Wang,et al.  Effects of Platinum on the Interdiffusion and Oxidation Behavior of Ni-Al-Based Alloys , 2004 .

[41]  Jian Sun,et al.  Effect of nitridation on the oxidation behavior of TiAl-based intermetallic alloys , 2001 .

[42]  Karren L. More,et al.  Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates , 2004 .

[43]  S. Isobe,et al.  Hard surfacing of TiAl intermetallic compound by plasma carburization , 1996 .