Metal-Metal Oxide and Metal Oxide Electrodes as pH Sensors.

The pH is one of the most important parameters for char-acterizing the chemical properties of an aqueous solution. The glass eiectrode is by far the most commonly used pH sensor. The determination of pH in special situations, e.g., in vivo applications where the fragility of the glass electrode is a draw-back, requires pH sensors that can easily be miniaturized and built into physically rugged sleeves. Also, for other applications where the volume of solution is very restricted miniaturization of pH sensors is very important. The glass electrode does not respond properly to pH in some corrosive environments (e.g., in hydrogen fluoride [HF] solutions). At present, among alternatives to the hydrogen-selective glass electrode group of sensors, potentiometric metal-metal oxide pH sensors respond to pH, ideally due to an equilibrium involving the metal and its oxide. In the case of metal oxide electrodes, the metal is not involved in the potential-determining reaction. This distinction is of course not clear in many cases because the mechanism giving the pH response is not always unequivocal.

[1]  A. Uhl,et al.  Die elektrometrische Titration von Säuren und Basen mit der Antimon-Indikatorelektrode , 1923 .

[2]  E. J. Roberts,et al.  THE ANTIMONY-ANTIMONY TRIOXIDE ELECTRODE AND ITS USE AS A MEASURE OF ACIDITY1 , 1928 .

[3]  Ekkehard Fluck,et al.  Gmelins Handbuch der anorganischen Chemie , 1931, Nature.

[4]  M. Pourbaix,et al.  Potential‐pH Diagram of the Antimony‐Water System Its Applications to Properties of the Metal, Its Compounds, Its Corrosion, and Antimony Electrodes , 1957 .

[5]  W. C. Purdy,et al.  Potentiometric Electrode Systems In Nonaqueous Titrimetry , 1957 .

[6]  W. C. Purdy,et al.  The Antimony-Antimony Oxide Electrode , 1958 .

[7]  A. Hickling,et al.  Anodic oxidation of palladium , 1961 .

[8]  E. Bishop,et al.  Some observations on the zero-current behaviour of antimony indicator electrodes , 1964 .

[9]  J. Hoare The Effect of Metal Dissolution on the Rest Potential in the Palladium‐Oxygen‐Acid System , 1964 .

[10]  J. Hoare On the Mixed Potentials Observed in the Iridium‐Oxygen‐Acid System , 1964 .

[11]  E. Bishop,et al.  Concentration Overpotentials on Antimony Electrodes in Differential Electrolytic Potentiometry. , 1965 .

[12]  P. Nair,et al.  A microelectrode for measuring intracellular PO2. , 1967, Journal of applied physiology.

[13]  F. L. Vieira,et al.  Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. , 1968, The American journal of physiology.

[14]  J. Hoare Oxygen overvoltage on bright iridium , 1968 .

[15]  R. Bates,et al.  BEHAVIOR OF THE GLASS ELECTRODE AND OTHER pH‐RESPONSIVE ELECTRODES IN BIOLOGICAL MEDIA , 1968, Annals of the New York Academy of Sciences.

[16]  S. Solomon,et al.  A method for determining titratable acidity in nanoliter samples of biological fluids. , 1969, Analytical Biochemistry.

[17]  J. Beeley,et al.  Polyacrylamide gel isoelectric focusing of proteins: determination of isoelectric points using an antimony electrode. , 1972, Biochimica et biophysica acta.

[18]  R. Parsons,et al.  The effect of strong acid on the reactions of hydrogen and oxygen on the noble metals. A study using cyclic voltammetry and a new teflon electrode holder , 1972 .

[19]  H. I. Bicher,et al.  Intracellular pH electrode. Experiments on the giant squid axon. , 1972, Biochimica et biophysica acta.

[20]  F. L. Vieira,et al.  The antimony microelectrode in kidney micropuncture. , 1972, The Yale journal of biology and medicine.

[21]  E. Bishop,et al.  Differential electrolytic potentiometry with periodic polarisation. Part XXI. Introduction and instrumentation , 1973 .

[22]  B. Conway,et al.  Real condition of oxidized platinum electrodes. Part 2.—Resolution of reversible and irreversible processes by optical and impedance studies , 1973 .

[23]  B. Karlmark The determination of titratable acid and ammonium ions in picomole amounts. , 1973, Analytical biochemistry.

[24]  E. Bishop,et al.  Precise coulometric determination of acids in cells without liquid junction. Part I. Introduction and instrumentation , 1973 .

[25]  J. Smith 3 – GENERAL ASPECTS OF THE CHEMISTRY OF ARSENIC, ANTIMONY AND BISMUTH , 1973 .

[26]  M. Sohtell,et al.  The determination of bicarbonate in nanoliter samples. , 1973, Analytical biochemistry.

[27]  J. Puschett,et al.  Re-evaluation of microelectrode methodology for the in vitro determination of pH and bicarbonate concentration. , 1974, Kidney international.

[28]  D. Rand,et al.  Cyclic voltammetric studies on iridium electrodes in sulphuric acid solutions , 1974 .

[29]  N. Winograd,et al.  X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode , 1974 .

[30]  G. Giebisch,et al.  Some problems with the antimony microelectrode. , 1974, Advances in experimental medicine and biology.

[31]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[32]  R. Jasinski A PALLADIUM HYDRIDE PH ELECTRODE FOR USE IN BUFFERED FLUORIDE ETCH SOLUTIONS , 1975 .

[33]  J. Smith The chemistry of arsenic, antimony and bismuth , 1975 .

[34]  G. Papeschi,et al.  Use of an iridium electrode for direct measurements of pI of proteins after isoelectric focusing in polyacrylamide gel. , 1976, Biochimica et biophysica acta.

[35]  H. Thirsk,et al.  EMF measurements of cells employing metal—metal oxide electrodes in aqueous chloride and sulphate electrolytes at temperatures between 25–250°C☆ , 1976 .

[36]  H. Thirsk,et al.  EMF. MEASUREMENTS OF CELLS EMPLOYING METAL-METAL OXIDE ELECTRODES IN AQUEOUS CHLORIDE AND SULFATE ELECTROLYTES AT TEMPERATURES BETWEEN 25-250° , 1976 .

[37]  D. N. Buckley,et al.  The oxygen electrode. Part 7.—Influence of some electrical and electrolyte variables on the charge capacity of iridium in the anodic region , 1976 .

[38]  A. Beran,et al.  Electrochemical sensor for continuous transcutaneous PCO2 measurement. , 1976, Journal of applied physiology.

[39]  R. L. Coon,et al.  Evaluation of a dual-function pH and PCO2 in vivo sensor. , 1976, Journal of applied physiology.

[40]  A. Beran,et al.  CONTINUOUS MONITORING OF ARTERIAL PaCO2 BY NON-INVASIVE TRANSCUTANEOUS METHOD , 1977, Pediatric Research.

[41]  M. Mascini,et al.  A new ph electrode for gas-sensing probes , 1977 .

[42]  H. Yeung,et al.  An Improved Sensor and a Method for Transcutaneous CO2 Monitoring , 1978, Acta anaesthesiologica Scandinavica. Supplementum.

[43]  N. Carter,et al.  Manufacture and utilization of antimony pH electrodes. , 1978, Kidney international.

[44]  H. Yeung,et al.  Low Impedance pH Sensitive Electrochemical Devices That are Potentially Applicable to Transcutaneous PGo2 Measurements , 1978, Acta anaesthesiologica Scandinavica. Supplementum.

[45]  N. Levine,et al.  Measurement of pH in the rat epididymis in vivo. , 1978, Journal of reproduction and fertility.

[46]  G. Beni,et al.  Electrochromic iridium oxide films prepared by reactive sputtering , 1979 .

[47]  G. Edwall Influence of crystallographic properties on antimony electrode potential—III. Oriented monocrystalline material , 1979 .

[48]  S. Gottesfeld,et al.  Electrochromism in Anodic Iridium Oxide Films II . pH Effects on Corrosion Stability and the Mechanism of Coloration and Bleaching , 1979 .

[49]  N. Dhalla,et al.  The suitability of the antimony electrode for pH determinations in mammalian heart. , 1980, Journal of pharmacological methods.

[50]  Y. Matsumura,et al.  Physicochemical characteristics of antimony microelectrode with special reference to selection of standard buffers. , 1980, The Japanese journal of physiology.

[51]  M. Neuman,et al.  A Palladium-palladium oxide miniature pH electrode. , 1980, Science.

[52]  L. Niedrach Oxygen Ion—Conducting Ceramics: A New Application in High-Temperature—High-Pressure pH Sensors , 1980, Science.

[53]  G. Edwall,et al.  Evaluation of the influence of impurities on the oxygen sensitivity of monocrystalline antimony electrodes , 1980 .

[54]  S. Shahine,et al.  Studies on the use of tantalum electrode in electrometric titrations , 1980 .

[55]  Y. Matsumura,et al.  Measurement of intracellular pH of bullfrog skeletal muscle and renal tubular cells with double-barreled antimony microelectrodes. , 1980, Membrane biochemistry.

[56]  Y. Matsumura,et al.  Temperature coefficient of and oxygen effect on the antimony microelectrode. , 1980, The Japanese journal of physiology.

[57]  Y. Matsumura,et al.  General properties of antimony microelectrode in comparison with glass microelectrode for pH measurement. , 1980, The Japanese journal of physiology.

[58]  W. Grubb,et al.  Palladium-palladium oxide pH electrodes , 1980 .

[59]  P. Bergveld,et al.  Iridium / Anodic Iridium Oxide Film Electrode as a pH Sensor , 1980 .

[60]  D. Harrison,et al.  Tissue pH electrodes for clinical applications. , 1980, Journal of medical engineering & technology.

[61]  Y. Matsumura,et al.  Protein effect on the antimony microelectrode in application to biological fluid. , 1980, The Japanese journal of physiology.

[62]  S. Glarum,et al.  The A‐C Response of Iridium Oxide Films , 1980 .

[63]  S. Ardizzone,et al.  Properties of thermally prepared iridium dioxide electrodes , 1981 .

[64]  G. Edwall,et al.  Continuous intra-arterial pH-monitoring using monocrystalline antimony as sensor. A study in non-heparinized dogs. , 1981, Scandinavian journal of clinical and laboratory investigation.

[65]  L. Burke,et al.  A new interpretation of the charge storage and electrical conductivity behaviour of hydrous iridium oxide , 1981 .

[66]  S. Głąb,et al.  Effects of some complex-forming ligands on the potential of antimony pH-sensors. , 1981, Talanta.

[67]  M Carlà,et al.  An iridium-iridium oxide electrode for in vivo monitoring of blood pH changes. , 1981, Journal of medical engineering & technology.

[68]  S. Głąb,et al.  Autoprotolysis constants by coulometric titration. , 1981, Talanta.

[69]  B. Conway,et al.  Modification of Apparent Electrocatalysis for Anodic Chlorine Evolution on Electrochemically Conditioned Oxide Films at Iridium Anodes , 1981 .

[70]  E. Mizera,et al.  The anodic behavior of Pd electrodes in 1 M H2SO4 , 1981 .

[71]  J. Joseph,et al.  A coated-metal enzyme electrode for urea determinations , 1981 .

[72]  J. Zemel,et al.  pH-sensitive sputtered iridium oxide films , 1981 .

[73]  G. Edwall,et al.  A NEW TYPE OF MONOCRYSTALLINE ANTIMONY (MCA) ELECTRODE FOR TISSUE pH MONITORING IN CRITICALLY ILL PATIENTS , 1981 .

[74]  G. Edwall,et al.  Arterial pH monitoring with monocrystalline antimony sensors , 1982 .

[75]  S. Głąb,et al.  Cyclic voltammetric studies on a monocrystalline antimony electrode , 1982 .

[76]  W. J. Lorenz,et al.  Structural changes of surface oxide layers on palladium , 1982 .

[77]  D. Macdonald,et al.  STABILIZED CERAMIC MEMBRANE ELECTRODES FOR THE MEASUREMENT OF PH AT ELEVATED TEMPERATURES , 1982 .

[78]  T. F. Otero,et al.  Effect of temperature on the potentiodynamic behaviour of iridium in 0.5 M H2SO4 , 1983 .

[79]  B. Conway,et al.  Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour , 1983 .

[80]  G. Edwall,et al.  Continuous pH monitoring with monocrystalline antimony electrodes: toxicity considerations from studies on heparinized human plasma. , 1983, Scandinavian journal of clinical and laboratory investigation.

[81]  M. Yuen,et al.  Electrically free-standing IrOitx thin film electrodes for high temprature, corrosive environment pH sensing , 1983 .

[82]  B. Conway,et al.  Surface and bulk processes at oxidized iridium electrodes—II. Conductivity-switched behaviour of thick oxide films , 1983 .

[83]  L. Niedrach Comparison of the zirconia pH sensor and the glass electrode , 1983 .

[84]  M. Spira,et al.  Critical comparison of transcutaneous PO2 and tissue pH as indices of perfusion , 1983, Microsurgery.

[85]  I. R. Lauks,et al.  In vitro testing of a new system for monitoring pH at multiple sites. , 1983, Caries research.

[86]  Jan Van der Spiegel,et al.  High Temperature and High Pressure pH Sensors with Sputtered Iridium Oxide Films , 1983 .

[87]  R. Ianniello,et al.  Urea sensor based on iridium dioxide electrodes with immobilized urease , 1983 .

[88]  R. Kado,et al.  Application of antimony microelectrodes to intracellular pH monitoring. , 1983, Biochimica et biophysica acta.

[89]  L. Niedrach,et al.  Development of a High Temperature pH Electrode for Geothermal Fluids , 1984 .

[90]  PREPARATION OF AN OXIDIZED IRIDIUM ELECTRODE AND THE VARIATION OF ITS POTENTIAL WITH PH , 1984 .

[91]  Peter M. A. Sherwood,et al.  X-ray photoelectron spectroscopic studies of the iridium electrode system , 1984 .

[92]  L. Burke,et al.  A voltammetric investigation of the charge storage reactions of hydrous iridium oxide layers , 1984 .

[93]  Marc Madou,et al.  Electrochemical Measurements on Pt, Ir, and Ti Oxides as pH Probes , 1984 .

[94]  C. Mari,et al.  Physicochemical characterization of Co3O4 prepared by thermal decomposition. II: Response to solution pH , 1984 .

[95]  An investigation of hydrous oxide growth on iridium in base , 1984 .

[96]  F. Sjöberg,et al.  A multipoint micro antimony pH electrode for tissue surface measurements , 1984, International journal of clinical monitoring and computing.

[97]  Agner Fog,et al.  Electronic semiconducting oxides as pH sensors , 1984 .

[98]  A. I. Abdel-Rohman,et al.  The use of the Ta/Ta2O5 electrode as an indicator electrode in potentiometric acid-base titrations in fused KNO3 , 1984 .

[99]  M. Madou,et al.  Electrochemical measurements on metal oxide electrodes—I. Zirconium dioxide , 1984 .

[100]  J. Joseph,et al.  A miniature enzyme electrode sensitive to urea , 1984 .

[101]  M. Carlà,et al.  Iridium/iridium oxide electrode for potentiometric determination of proton activity in hydroorganic solutions at sub-zero temperatures , 1984 .

[102]  N. Szuminsky,et al.  A miniature palladium-palladium-oxide enzyme electrode for urea determination. , 1984, Biotechnology and bioengineering.

[103]  M. Madou,et al.  ELECTROCHEMICAL MEASUREMENTS ON METAL OXIDE ELECTRODES - I. ZIRCONIUM DIOXIDE , 1984 .

[104]  B. Conway,et al.  ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films , 1984 .

[105]  D. Macdonald,et al.  pH Measurements of High Temperature Aqueous Environments with Stabilized‐Zirconia Membranes , 1985 .

[106]  O. H. Koski,et al.  Recent Developments with High Temperature Stabilized‐Zirconia pH Sensors , 1985 .

[107]  O. H. Koski,et al.  A PERFORMANCE IMPROVEMENT FOR HIGH TEMPERATURE STABILIZED-ZIRCONIA PH SENSORS , 1985 .

[108]  L. Niedrach,et al.  Monitoring pH and Corrosion Potentials in High Temperature Aqueous Environments , 1985 .

[109]  S. Głąb,et al.  An examination of the palladium/palladium oxide system and its utility for pH-sensing electrodes , 1986 .

[110]  D. C. Roberts,et al.  Proteolytic enzyme modified metal oxide electrodes as potentiometric sensors. , 1986, Analytical chemistry.

[111]  S. Głąb,et al.  Polycrystalline and monocrystalline antimony, iridium and palladium as electrode material for pH-sensing electrodes. , 1986, Talanta.

[112]  F. Sjöberg,et al.  The oxygen sensitivity of a multipoint antimony electrode for tissue pH measurements. A study of the sensitivity for in vivo PO2 variations below 6 kPa. , 1987, Scandinavian journal of clinical and laboratory investigation.

[113]  M. Hitchman,et al.  Evaluation of iridium oxide electrodes formed by potential cycling as pH probes. , 1988, The Analyst.