A new structure-preserving method for quaternion Hermitian eigenvalue problems

In this paper we propose a novel structure-preserving algorithm for solving the right eigenvalue problem of quaternion Hermitian matrices. The algorithm is based on the structure-preserving tridiagonalization of the real counterpart for quaternion Hermitian matrices by applying orthogonal JRS-symplectic matrices. The algorithm is numerically stable because we use orthogonal transformations; the algorithm is very efficient, it costs about a quarter arithmetical operations, and a quarter to one-eighth CPU times, comparing with standard general-purpose algorithms. Numerical experiments are provided to demonstrate the efficiency of the structure-preserving algorithm.

[1]  Davies,et al.  Nonrelativistic quaternionic quantum mechanics in one dimension. , 1989, Physical review. A, General physics.

[2]  David Finkelstein,et al.  Quaternionic Representations of Compact Groups , 1963 .

[3]  S. De Leo,et al.  Quaternionic Groups in Physics , 1999 .

[4]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[5]  G. Scolarici,et al.  Quaternionic representations of magnetic groups , 1997 .

[6]  S. L. Adler Composite leptons and quarks constructed as triply occupied quasiparticles in quaternionic quantum mechanics , 1994 .

[7]  Chia-Hsiung Tze,et al.  On the Role of Division, Jordan and Related Algebras in Particle Physics , 1996 .

[8]  J. L. Brenner,et al.  Matrices of quaternions. , 1951 .

[9]  Stefano De Leo,et al.  Quaternionic electroweak theory , 1996 .

[10]  De Leo S,et al.  Quaternion scalar field. , 1992, Physical review. D, Particles and fields.

[11]  Yimin Wei,et al.  JORDAN CANONICAL FORM OF A PARTITIONED COMPLEX MATRIX AND ITS APPLICATION TO REAL QUATERNION MATRICES , 2001 .

[12]  G. Scolarici,et al.  Notes on quaternionic group representations , 1995 .

[13]  S. Leo,et al.  Solving simple quaternionic differential equations , 2003, math-ph/0306074.

[14]  Stefano De Leo Quaternions and special relativity , 1996 .

[15]  S. Leo,et al.  Right eigenvalue equation in quaternionic quantum mechanics , 2000, math-ph/0002051.

[16]  Stephen L. Adler,et al.  A rejoinder on quaternionic projective representations , 1997 .

[17]  Françoise Tisseur,et al.  Stability of Structured Hamiltonian Eigensolvers , 2001, SIAM J. Matrix Anal. Appl..

[18]  Wasin So,et al.  On left eigenvalues of a quaternionic matrix , 2001 .

[19]  G. Dixon,et al.  Division Algebras:: Octonions Quaternions Complex Numbers and the Algebraic Design of Physics , 1994 .

[20]  S. Adler,et al.  Quaternionic quantum mechanics and quantum fields , 1995 .

[21]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[22]  Adler Scattering and decay theory for quaternionic quantum mechanics, and the structure of induced T nonconservation. , 1988, Physical review. D, Particles and fields.

[23]  Paul M. Cohn,et al.  Skew field constructions , 1973 .

[24]  Stefano De Leo Quaternions for GUTs , 1996 .

[25]  Peter Benner,et al.  Symplectic Balancing of Hamiltonian Matrices , 2000, SIAM J. Sci. Comput..

[26]  David Finkelstein,et al.  Principle of General Q Covariance , 1963 .

[27]  Yan Feng,et al.  An iterative algorithm for least squares problem in quaternionic quantum theory , 2008, Comput. Phys. Commun..

[28]  Volker Mehrmann,et al.  A numerical method for computing the Hamiltonian Schur form , 2006, Numerische Mathematik.

[29]  Cliff Hooker,et al.  The Logico-Algebraic Approach to Quantum Mechanics , 1975 .

[30]  S. De Leo,et al.  Complex Geometry and Dirac Equation , 1998 .

[31]  Tongsong Jiang,et al.  An algorithm for eigenvalues and eigenvectors of quaternion matrices in quaternionic quantum mechanics , 2004 .

[32]  Fuzhen Zhang Geršgorin type theorems for quaternionic matrices , 2007 .

[33]  Jakub Rembieliński,et al.  Tensor product of the octonionic Hilbert spaces and colour confinement , 1978 .

[34]  Nir Cohen,et al.  The quaternionic determinant , 2000 .

[35]  Tongsong Jiang,et al.  Algebraic methods for diagonalization of a quaternion matrix in quaternionic quantum theory , 2005 .

[36]  S. Leo,et al.  Quaternionic eigenvalue problem , 2002, math-ph/0211063.

[37]  J. Bunch The weak and strong stability of algorithms in numerical linear algebra , 1987 .

[38]  Heike Faßbender,et al.  Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems , 2001 .

[39]  L. Horwitz,et al.  Quaternion Quantum Mechanics: Second Quantization and Gauge Fields , 1984 .

[40]  F. Tisseur,et al.  STRUCTURED TOOLS FOR STRUCTURED MATRICES , 2003 .

[41]  Thomas L. Hankins,et al.  Sir William Rowan Hamilton , 1980 .

[42]  Stefano De Leo,et al.  The Quaternionic Dirac Lagrangian , 1996 .

[43]  Samuel Schiminovich,et al.  Foundations of Quaternion Quantum Mechanics , 1962 .

[44]  Daniel Kressner,et al.  Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II , 2005, TOMS.

[45]  Stefano De Leo,et al.  Quaternionic Electron Theory: Dirac's Equation , 1998, hep-th/9806057.

[46]  S. De Leo,et al.  Representations ofU(1,q) and constructive quaternion tensor products , 1995 .

[47]  S. Leo,et al.  Real linear quaternionic differential operators , 2004 .