Blockade of EGFR signaling promotes glioma stem-like cell invasiveness by abolishing ID3-mediated inhibition of p27(KIP1) and MMP3 expression.

[1]  P. Friedl,et al.  Cancer invasion and resistance , 2013, EJC supplements : EJC : official journal of EORTC, European Organization for Research and Treatment of Cancer ... [et al.].

[2]  D. Bernardo,et al.  Id proteins synchronize stemness and anchorage to the niche of neural stem cells , 2012, Nature Cell Biology.

[3]  K. Shin‐ya,et al.  Telomestatin Impairs Glioma Stem Cell Survival and Growth through the Disruption of Telomeric G-Quadruplex and Inhibition of the Proto-oncogene, c-Myb , 2012, Clinical Cancer Research.

[4]  Stephanie Alexander,et al.  Cancer Invasion and the Microenvironment: Plasticity and Reciprocity , 2011, Cell.

[5]  D. Nam,et al.  EGFR-AKT-Smad signaling promotes formation of glioma stem-like cells and tumor angiogenesis by ID3-driven cytokine induction. , 2011, Cancer research.

[6]  P. Mischel,et al.  CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway , 2011, PloS one.

[7]  M. Delorenzi,et al.  Pathway Analysis of Glioblastoma Tissue after Preoperative Treatment with the EGFR Tyrosine Kinase Inhibitor Gefitinib—A Phase II Trial , 2011, Molecular Cancer Therapeutics.

[8]  I. Date,et al.  Angiogenesis and invasion in glioma , 2011, Brain Tumor Pathology.

[9]  Yoshitaka Narita,et al.  Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. , 2010, Genes & development.

[10]  I. Christensen,et al.  Prospective evaluation of angiogenic, hypoxic and EGFR‐related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan , 2010, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[11]  P. C. de Witt Hamer Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. , 2010, Neuro-oncology.

[12]  A. Martin-Villalba,et al.  Sensing invasion: Cell surface receptors driving spreading of glioblastoma , 2010, Journal of cellular physiology.

[13]  J. Engh,et al.  Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α , 2009, Oncogene.

[14]  J. Slingerland,et al.  p27 as Jekyll and Hyde: Regulation of cell cycle and cell motility , 2009, Cell cycle.

[15]  M. Moran,et al.  Epidermal growth factor receptor variant III-induced glioma invasion is mediated through myristoylated alanine-rich protein kinase C substrate overexpression. , 2009, Cancer research.

[16]  Paul S Mischel,et al.  Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients. , 2009, Cancer research.

[17]  D. Helfman,et al.  RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility , 2009, Proceedings of the National Academy of Sciences.

[18]  R. Russell,et al.  Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. , 2009, Cell stem cell.

[19]  Y. Marie,et al.  Molecular Mechanisms Underlying Effects of Epidermal Growth Factor Receptor Inhibition on Invasion, Proliferation, and Angiogenesis in Experimental Glioma , 2009, Clinical Cancer Research.

[20]  R. Bjerkvig,et al.  DNA repair and cancer stem-like cells--potential partners in glioma drug resistance? , 2008, Cancer treatment reviews.

[21]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[22]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[23]  Dong-Sup Lee,et al.  Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas , 2008, Laboratory Investigation.

[24]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[25]  B. Datnow,et al.  Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. , 2007, Cancer research.

[26]  A. Chalmers Radioresistant glioma stem cells--therapeutic obstacle or promising target? , 2007, DNA repair.

[27]  R. Buscà,et al.  Id3 is a novel regulator of p27kip1 mRNA in early G1 phase and is required for cell-cycle progression , 2007, Oncogene.

[28]  Andrew J. Ewald,et al.  Matrix metalloproteinases and the regulation of tissue remodelling , 2007, Nature Reviews Molecular Cell Biology.

[29]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[30]  I. Nakano,et al.  Brain Tumor Stem Cells , 2006, Pediatric Research.

[31]  Kimmo J Hatanpaa,et al.  Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. , 2006, Cancer research.

[32]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[33]  David J. Yang,et al.  Prognostic Effect of Epidermal Growth Factor Receptor and EGFRvIII in Glioblastoma Multiforme Patients , 2005, Clinical Cancer Research.

[34]  Timothy M. Errington,et al.  Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. , 2005, Cancer research.

[35]  R. Bast,et al.  Subcellular localization of p27kip1 expression predicts poor prognosis in human ovarian cancer. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[36]  James M. Roberts,et al.  p27Kip1 modulates cell migration through the regulation of RhoA activation. , 2004, Genes & development.

[37]  Carlos L. Arteaga,et al.  PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization , 2002, Nature Medicine.

[38]  D. Liggitt,et al.  Pathway-specific tumor suppression. Reduction of p27 accelerates gastrointestinal tumorigenesis in Apc mutant mice, but not in Smad3 mutant mice. , 2002, Cancer cell.

[39]  C. Kemp,et al.  Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis , 1999, Oncogene.

[40]  James M. Roberts,et al.  Cyclin E-CDK2 is a regulator of p27Kip1. , 1997, Genes & development.

[41]  J. S. Rao,et al.  Invasion of human glioma: role of extracellular matrix proteins. , 1996, Frontiers in bioscience : a journal and virtual library.

[42]  C. Bartram,et al.  Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. , 1995, Cancer research.

[43]  R. Roeder,et al.  Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. , 1983, Nucleic acids research.

[44]  P. Friedl,et al.  Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. , 2012, Trends in molecular medicine.

[45]  Susan M. Chang,et al.  A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. , 2010, Neuro-oncology.

[46]  B. Datnow,et al.  Denicourt, C., Saenz, C. C., Datnow, B., Cui, X. S. & Dowdy, S. F. Relocalized p27KiP1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res. 67, 9238-9243 , 2007 .