On Happy Colorings, Cuts, and Structural Parameterizations

We study the Maximum Happy Vertices and Maximum Happy Edges problems. The former problem is a variant of clusterization, where some vertices have already been assigned to clusters. The second problem gives a natural generalization of Multiway Uncut, which is the complement of the classical Multiway Cut problem. Due to their fundamental role in theory and practice, clusterization and cut problems has always attracted a lot of attention. We establish a new connection between these two classes of problems by providing a reduction between Maximum Happy Vertices and Node Multiway Cut. Moreover, we study structural and distance to triviality parameterizations of Maximum Happy Vertices and Maximum Happy Edges. Obtained results in these directions answer questions explicitly asked in four works: Agrawal '17, Aravind et al. '16, Choudhari and Reddy '18, Misra and Reddy '17.

[1]  Akanksha Agrawal,et al.  On the Parameterized Complexity of Happy Vertex Coloring , 2017, IWOCA.

[2]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[3]  Fedor V. Fomin,et al.  Faster exact algorithms for some terminal set problems , 2017, J. Comput. Syst. Sci..

[4]  Anjeneya Swami Kare,et al.  Linear Time Algorithms for Happy Vertex Coloring Problems for Trees , 2016, IWOCA.

[5]  Hang Gao,et al.  Kernelization for Maximum Happy Vertices Problem , 2018, LATIN.

[6]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[7]  I. Vinod Reddy,et al.  The Parameterized Complexity of Happy Colorings , 2017, IWOCA.

[8]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[9]  Marcin Pilipczuk,et al.  A Fast Branching Algorithm for Cluster Vertex Deletion , 2014, CSR.

[10]  Klaus Jansen,et al.  The Disjoint Cliques Problem , 1992, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[11]  Juho Lauri,et al.  Algorithms and hardness results for happy coloring problems , 2017, ArXiv.

[12]  Stefan Rümmele,et al.  Multicut on Graphs of Bounded Clique-Width , 2012, COCOA.

[13]  Petr A. Golovach,et al.  Parameterized complexity of three edge contraction problems with degree constraints , 2014, Acta Informatica.

[14]  Jayesh Choudhari,et al.  On Structural Parameterizations of Happy Coloring, Empire Coloring and Boxicity , 2018, WALCOM.

[15]  Kerri Morgan,et al.  Finding happiness: An analysis of the maximum happy vertices problem , 2019, Computers & Operations Research.

[16]  Dániel Marx,et al.  Randomized Methods in Parameterized Algorithms , 2015 .

[17]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[18]  Angsheng Li,et al.  Algorithmic aspects of homophyly of networks , 2012, Theor. Comput. Sci..

[19]  Petr A. Golovach,et al.  Parameterized Complexity of Two Edge Contraction Problems with Degree Constraints , 2013, IPEC.

[20]  Michal Pilipczuk,et al.  Dominating set is fixed parameter tractable in claw-free graphs , 2010, Theor. Comput. Sci..

[21]  Christian Komusiewicz,et al.  Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2008, LATIN.

[22]  Tao Jiang,et al.  Improved Approximation Algorithms for the Maximum Happy Vertices and Edges Problems , 2017, Algorithmica.

[23]  Yao Xu,et al.  Submodular and supermodular multi-labeling, and vertex happiness , 2016, ArXiv.

[24]  Ioan Todinca Coloring Powers of Graphs of Bounded Clique-Width , 2003, WG.

[25]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[26]  Udi Rotics,et al.  On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..