Tropical Spectrahedra

We introduce tropical spectrahedra, defined as the images by the nonarchimedean valuation of spectrahedra over the field of real Puiseux series. We provide an explicit polyhedral characterization of generic tropical spectrahedra, involving principal tropical minors of size at most 2. One of the key ingredients is Denef–Pas quantifier elimination result over valued fields. We obtain from this that the nonarchimedean valuation maps semialgebraic sets to semilinear sets that are closed. We also prove that, under a regularity assumption, the image by the valuation of a basic semialgebraic set is obtained by tropicalizing the inequalities which define it.

[1]  D. Marker Model theory : an introduction , 2002 .

[2]  Frédéric Bihan,et al.  Viro Method for the Construction of Real Complete Intersections , 2002 .

[3]  John Pas,et al.  On the angular component map modulo P , 1990, Journal of Symbolic Logic.

[4]  Bernd Grtner,et al.  Approximation Algorithms and Semidefinite Programming , 2012 .

[5]  J. William Helton,et al.  Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets , 2007, SIAM J. Optim..

[6]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[7]  L. Lipshitz,et al.  Analytic cell decomposition and analytic motivic integration , 2005, math/0503722.

[8]  Thomas Markwig,et al.  A Field of Generalised Puiseux Series for Tropical Geometry , 2007, 0709.3784.

[9]  Mike Develin,et al.  Tropical Polytopes and Cellular Resolutions , 2007, Exp. Math..

[10]  Jan Denef,et al.  The rationality of the Poincaré series associated to thep-adic points on a variety , 1984 .

[11]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[12]  Wim H. Schikhof,et al.  VALUED FIELDS , 2008 .

[13]  Xavier Allamigeon,et al.  Tropicalizing the Simplex Algorithm , 2013, SIAM J. Discret. Math..

[14]  Bernd Sturmfels Viro's theorem for complete intersections , 1994 .

[15]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[16]  Xavier Allamigeon,et al.  Solving Generic Nonarchimedean Semidefinite Programs Using Stochastic Game Algorithms , 2016, ISSAC.

[17]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[18]  Jan Denef,et al.  p-adic semi-algebraic sets and cell decomposition. , 1986 .

[19]  Volker Weispfenning,et al.  Quantifier elimination and decision procedures for valued fields , 1984 .

[20]  B. M. Fulk MATH , 1992 .

[21]  Johan Pas,et al.  Uniform p-adic cell decomposition and local zeta functions. , 1989 .

[22]  Victor Vinnikov,et al.  LMI Representations of Convex Semialgebraic Sets and Determinantal Representations of Algebraic Hypersurfaces: Past, Present, and Future , 2012, 1205.2286.

[23]  Daniele Alessandrini,et al.  Logarithmic limit sets of real semi-algebraic sets , 2007, 0707.0845.