The Dynamics of Shear Band Propagation in Metallic Glasses

[1]  K. Dahmen,et al.  Experimental evidence that shear bands in metallic glasses nucleate like cracks , 2022, Scientific Reports.

[2]  C. Gammer,et al.  Mapping Shear Bands in Metallic Glasses: From Atomic Structure to Bulk Dynamics. , 2022, Physical review letters.

[3]  J. Mauro,et al.  Atomic-scale modeling of crack branching in oxide glass , 2021 .

[4]  H. Urbassek,et al.  Interaction between parallel shear bands in a metallic glass , 2021 .

[5]  J. Eckert,et al.  Origin of strain hardening in monolithic metallic glasses , 2021 .

[6]  N. Mousseau,et al.  An atomic-level perspective of shear band formation and interaction in monolithic metallic glasses , 2020 .

[7]  J. Eckert,et al.  Intrinsic and extrinsic effects on the brittle-to-ductile transition in metallic glasses , 2020 .

[8]  S. Scudino,et al.  Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses , 2020 .

[9]  J. Schroers,et al.  Fast Screening of Corrosion Trends in Metallic Glasses. , 2019, ACS combinatorial science.

[10]  Yunfeng Shi,et al.  On measuring the fracture energy of model metallic glasses , 2018, Journal of Applied Physics.

[11]  S. Scudino,et al.  Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses. , 2017, Physical review letters.

[12]  Wence Wang,et al.  Mutual interaction of shear bands in metallic glasses , 2017 .

[13]  M. Seleznev,et al.  Dislocation characteristics of shear bands in metallic glasses , 2017 .

[14]  J. Perepezko,et al.  Focus: Nucleation kinetics of shear bands in metallic glass. , 2016, The Journal of chemical physics.

[15]  Christopher A. Schuh,et al.  Deformation of metallic glasses: Recent developments in theory, simulations, and experiments , 2016 .

[16]  Yunfeng Shi,et al.  A model metallic glass exhibits size-independent tensile ductility , 2016 .

[17]  J. X. Zhao Understanding the shear band interaction in metallic glass , 2016 .

[18]  Yunfeng Shi,et al.  The local stress state of a running shear band in amorphous solids , 2015 .

[19]  G. Wang,et al.  Progressive shear band propagation in metallic glasses under compression , 2015 .

[20]  J. Fineberg,et al.  Recent developments in dynamic fracture: some perspectives , 2015, International Journal of Fracture.

[21]  Jörg F. Löffler,et al.  Shear‐Band Dynamics in Metallic Glasses , 2015 .

[22]  Yunfeng Shi,et al.  Tensile fracture of metallic glasses via shear band cavitation , 2015 .

[23]  Yunfeng Shi,et al.  Shear-induced volumetric strain in CuZr metallic glass , 2014 .

[24]  Jian Xu,et al.  Damage-tolerant Zr-Cu-Al-based bulk metallic glasses with record-breaking fracture toughness , 2014 .

[25]  Gang Wang,et al.  Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit , 2014, Scientific Reports.

[26]  Yunfeng Shi,et al.  Intrinsic ductility of glassy solids , 2014 .

[27]  E. Homer Examining the initial stages of shear localization in amorphous metals , 2014 .

[28]  Jay Fineberg,et al.  The dynamics of rapid fracture: instabilities, nonlinearities and length scales , 2013, Reports on progress in physics. Physical Society.

[29]  K. Albe,et al.  Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations , 2013 .

[30]  X. Gu,et al.  High–speed imaging of a bulk metallic glass during uniaxial compression , 2013 .

[31]  Evan Ma,et al.  Shear bands in metallic glasses , 2013 .

[32]  H. Hentschel,et al.  Microscopic mechanism of shear bands in amorphous solids. , 2012, Physical review letters.

[33]  Jun Sun,et al.  Approaching the ideal elastic limit of metallic glasses , 2012, Nature Communications.

[34]  T. Nieh,et al.  Direct measurements of shear band propagation in metallic glasses – An overview , 2011 .

[35]  Shin Takeuchi,et al.  Atomistic simulation and modeling of localized shear deformation in metallic glasses , 2011 .

[36]  Robert O Ritchie,et al.  A damage-tolerant glass. , 2011, Nature materials.

[37]  E. Faran,et al.  Twin motion faster than the speed of sound. , 2010, Physical review letters.

[38]  J. Fineberg,et al.  The Near-Tip Fields of Fast Cracks , 2010, Science.

[39]  J. Fineberg,et al.  Weakly nonlinear fracture mechanics: experiments and theory , 2010 .

[40]  Julia R Greer,et al.  Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. , 2010, Nature materials.

[41]  Evan Ma,et al.  Structural processes that initiate shear localization in metallic glass , 2009 .

[42]  E. Ma,et al.  Configurational dependence of elastic modulus of metallic glass , 2009 .

[43]  E. Ma,et al.  Atomic level structure in multicomponent bulk metallic glass. , 2009, Physical review letters.

[44]  J. Fineberg,et al.  The 1/r singularity in weakly nonlinear fracture mechanics , 2009, 0902.2121.

[45]  J. Fineberg,et al.  Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. , 2008, Physical review letters.

[46]  Ju Li,et al.  Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations , 2007 .

[47]  G. Morfill,et al.  Supersonic dislocations observed in a plasma crystal. , 2007, Physical review letters.

[48]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[49]  Yunfeng Shi,et al.  Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids. , 2006, Physical review letters.

[50]  J. Fineberg,et al.  Oscillations in rapid fracture. , 2006, Physical review letters.

[51]  Ju Li,et al.  Yield point of metallic glass , 2006 .

[52]  Yunfeng Shi,et al.  Atomic-scale simulations of strain localization in three-dimensional model amorphous solids , 2006 .

[53]  C. Maloney,et al.  Amorphous systems in athermal, quasistatic shear. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  W. Johnson,et al.  A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. , 2005, Physical review letters.

[55]  Yunfeng Shi,et al.  Strain localization and percolation of stable structure in amorphous solids. , 2005, Physical review letters.

[56]  Yunfeng Shi,et al.  Structural transformation and localization during simulated nanoindentation of a noncrystalline metal film , 2005, cond-mat/0503286.

[57]  J. Fineberg,et al.  Universal Aspects of Dynamic Fracture in Brittle Materials , 2004 .

[58]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[59]  Ares J. Rosakis,et al.  Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition , 2004, Science.

[60]  Rosakis Supersonic Dislocation Kinetics from an Augmented Peierls Model. , 2001, Physical review letters.

[61]  Gao,et al.  How fast can cracks propagate? , 2000, Physical review letters.

[62]  A. Rosakis,et al.  Cracks faster than the shear wave speed , 1999, Science.

[63]  Gao,et al.  Dislocations faster than the speed of sound , 1999, Science.

[64]  J. Langer,et al.  Dynamics of viscoplastic deformation in amorphous solids , 1997, cond-mat/9712114.

[65]  P. Rosakis,et al.  Dynamic twinning processes in crystals , 1995 .

[66]  Michael P Marder,et al.  Origin of crack tip instabilities , 1994, chao-dyn/9410009.

[67]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[68]  Huajian Gao Surface roughening and branching instabilities in dynamic fracture , 1993 .

[69]  G. Wahnström,et al.  Molecular-dynamics study of a supercooled two-component Lennard-Jones system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[70]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[71]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[72]  V. Vítek,et al.  An atomistic study of deformation of amorphous metals , 1983 .

[73]  J. D. Eshelby Uniformly Moving Dislocations , 1949 .