Errors in graph embedding algorithms

One major area of difficulty in developing an algorithm for embedding a graph on a surface is handling bridges which have more than one possible placement. This paper addresses a number of published algorithms where this has not been handled correctly. This problem arises in certain presentations of the Demoucron, Malgrange and Pertuiset planarity testing algorithm. It also occurs in an algorithm of Filotti for embedding 3-regular graphs on the torus. The same error appears in an algorithm for embedding graphs of arbitrary genus by Filotti, Miller and Reif. It is also present in an algorithm for embedding graphs of arbitrary genus by Djidjev and Reif. The omission regarding the Demoucron, Malgrange and Pertuiset planarity testing algorithm is easily remedied. However there appears to be no way of correcting the algorithms of the other papers without making the algorithms take exponential time.

[1]  John M. Boyer,et al.  On the Cutting Edge: Simplified O(n) Planarity by Edge Addition , 2004, J. Graph Algorithms Appl..

[2]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[3]  A. Gibbons Algorithmic Graph Theory , 1985 .

[4]  I. S. Filotti,et al.  An Algorithm for Imbedding Cubic Graphs in the Torus , 1980, J. Comput. Syst. Sci..

[5]  William L. Kocay,et al.  Embeddings of Small Graphs on the Torus , 2001 .

[6]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[7]  Wei-Kuan Shih,et al.  A New Planarity Test , 1999, Theor. Comput. Sci..

[8]  Bojan Mohar,et al.  Projective Planarity in Linear Time , 1993, J. Algorithms.

[9]  Narsingh Deo,et al.  Note on Hopcroft and Tarjan's Planarity Algorithm , 1976, J. ACM.

[10]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[11]  Bojan Mohar,et al.  Embedding Graphs in the Torus in Linear Time , 1995, IPCO.

[12]  Bojan Mohar,et al.  A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface , 1999, SIAM J. Discret. Math..

[13]  Gary L. Miller,et al.  On determining the genus of a graph in O(v O(g)) steps(Preliminary Report) , 1979, STOC.

[14]  Bojan Mohar,et al.  Embedding graphs in an arbitrary surface in linear time , 1996, STOC '96.

[15]  Wendy J. Myrvold,et al.  Practical toroidality testing , 1997, SODA '97.

[16]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[17]  I. S. Filotti An efficient algorithm for determining whether a cubic graph is toroidal , 1978, STOC '78.

[18]  Jennifer Woodcock,et al.  A faster algorithm for torus embedding , 2006 .

[19]  William Kocay,et al.  Embedding Graphs Containing K5-Subdivisions , 2002, Ars Comb..

[20]  Hristo Djidjev,et al.  An efficient algorithm for the genus problem with explicit construction of forbidden subgraphs , 1991, STOC '91.

[21]  Zoran Duric,et al.  An efficient algorithm for embedding graphs in the projective plane , 1985 .

[22]  G. Brinkmann Fast generation of cubic graphs , 1996 .

[23]  Donald L. Kreher,et al.  Graphs, algorithms and optimization , 2004 .