Multigrid reduction in time with Richardson extrapolation

The advent of exascale computing will leave many users with access to more computational resources than they can simultaneously use, e.g., billion-way parallelism. In particular, this is true for time-dependent simulations that limit parallelism to the spatial domain. One method to add parallelism in time to existing simulation codes and thus take advantage of ever larger compute resources is Multigrid Reduction in Time (MGRIT). The goal is to achieve a smaller time-to-solution through parallelism in time. In this paper, MGRIT is enhanced with Richardson extrapolation in a cost-efficient way to produce a parallel-in-time method with improved accuracy. Overall, this leads to a large improvement in the accuracy per computational cost of MGRIT.

[1]  Hans De Sterck,et al.  Optimizing MGRIT and Parareal coarse-grid operators for linear advection , 2019, ArXiv.

[2]  Baochang Shi,et al.  Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs , 2009 .

[3]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[4]  A. Katz,et al.  Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application , 2014 .

[5]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[6]  Robert D. Falgout,et al.  A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel , 2012 .

[7]  B. Ong,et al.  Applications of time parallelization , 2020, Computing and Visualization in Science.

[8]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[9]  Hans De Sterck,et al.  Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations , 2019, SIAM J. Sci. Comput..

[10]  Ulrich Rüde,et al.  Implicit Extrapolation Methods for Multilevel Finite Element Computations , 1996, SIAM J. Sci. Comput..

[11]  Klaus Bernert,et al.  τ-Extrapolation - Theoretical Foundation, Numerical Experiment, and Application to Navier-Stokes Equations , 1997, SIAM J. Sci. Comput..

[12]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[13]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[14]  Robert D. Falgout,et al.  Parallel-in-Time Solution of Power Systems with Scheduled Events , 2018, 2018 IEEE Power & Energy Society General Meeting (PESGM).

[15]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[16]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[17]  Ulrich Rüde,et al.  Implicit Extrapolation Methods for Variable Coefficient Problems , 1998, SIAM J. Sci. Comput..

[18]  Ulrich Rüde,et al.  The Hierarchical Basis Extrapolation Method , 1992, SIAM J. Sci. Comput..

[19]  P. J. van der Houwen,et al.  Parallel step-by-step methods , 1991 .

[20]  Sebastian Schöps,et al.  Exploring Parallel-in-Time Approaches for Eddy Current Problems , 2018, ArXiv.

[21]  Lars Ruthotto,et al.  Layer-Parallel Training of Deep Residual Neural Networks , 2018, SIAM J. Math. Data Sci..

[22]  Michael L. Minion,et al.  Parareal and Spectral Deferred Corrections , 2008 .

[23]  Antony Jameson,et al.  Combined Feature-Driven Richardson-Based Adaptive Mesh Refinement for Unsteady Vortical Flows , 2012 .

[24]  A. Brandt Guide to multigrid development , 1982 .

[25]  Thomas A. Manteuffel,et al.  Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study , 2017, SIAM J. Sci. Comput..

[26]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[27]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[28]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[29]  Jürg Nievergelt,et al.  Parallel methods for integrating ordinary differential equations , 1964, CACM.

[30]  Robert D. Falgout,et al.  A parallel multigrid reduction in time method for power systems , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[31]  Thomas A. Manteuffel,et al.  Multigrid Reduction in Time for Nonlinear Parabolic Problems , 2016 .

[32]  Christopher J. Roy,et al.  Review of Discretization Error Estimators in Scientific Computing , 2010 .