Axiomatizing GSOS with termination

We discuss a combination of GSOS-type structural operational semantics with explicit termination, that we call the tagh-format (tagh being short for termination and GSOS hybrid). The tagh-format distinguishes between transition and termination rules, but, besides active and negative premises as in GSOS, also allows for what we call terminating and passive arguments. We extend the result of Aceto, Bloom and Vaandrager on the automatic generation of sound and complete axiomatizations for GSOS to the setting of tagh-transition systems. The construction of the equational theory is based upon the notion of a smooth and distinctive operation, which have been generalized from GSOS to tagh. We prove the soundness of the synthesized laws and show their completeness modulo bisimulation. The examples provided indicate a significant, though yet not ideal, improvement over the axiomatization techniques known so far.

[1]  D. A. van Beek,et al.  Specification and simulation of industrial systems using an executable mathematical specification language , 1997 .

[2]  Wan Fokkink,et al.  Introduction to Process Algebra , 1999, Texts in Theoretical Computer Science. An EATCS Series.

[3]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[4]  Luca Aceto,et al.  CPO Models for Compact GSOS Languages , 1996, Inf. Comput..

[5]  Jan A. Bergstra,et al.  Syntax and defining equations for an interrupt mechanism in process algebra , 1985 .

[6]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[7]  Chris Verhoef,et al.  Concrete process algebra , 1995, LICS 1995.

[8]  Dieter K. Hammer,et al.  Design of the mine pump control system , 2001 .

[9]  V Victor Bos,et al.  Structured operational semantics of chi , 1999 .

[10]  Rob J. van Glabbeek,et al.  Bounded Nondeterminism and the Approximation Induction Principle in Process Algebra , 1987, STACS.

[11]  Jan A. Bergstra,et al.  Algebra of Communicating Processes , 1995, Workshops in Computing.

[12]  S. Andova Process algebra with interleaving probabilistic parallel composition , 1999 .

[13]  Frits W. Vaandrager,et al.  Turning SOS Rules into Equations , 1994, Inf. Comput..

[14]  Wil M. P. van der Aalst,et al.  Diagnosing Workflow Processes using Woflan , 2001, Comput. J..

[15]  Jcm Jos Baeten,et al.  Process algebra with explicit termination , 2000 .

[16]  V Victor Bos,et al.  Formal specification and analysis of industrial systems , 2002 .

[17]  Erik P. de Vink,et al.  Control flow semantics , 1996 .

[18]  Vaj Tijn Borghuis,et al.  Belief revision with explicit justifications : an exploration in type theory , 2000 .

[19]  Jan A. Bergstra,et al.  Deadlock Behaviour in Split and ST Bisimulation Semantics , 1998, EXPRESS.

[20]  Luca Aceto,et al.  Termination, deadlock, and divergence , 1992, JACM.

[21]  Dragan Bosnacki,et al.  Enhancing partial-order reduction via process clustering , 2001, Proceedings 16th Annual International Conference on Automated Software Engineering (ASE 2001).

[22]  Martijn Oostdijk An Interactive Viewer for Mathematical Content Based On Type Theory , 2000 .

[23]  Gi Gueorgui Jojgov,et al.  Systems for Open Terms: An Overview , 2001 .

[24]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[25]  Iso. Lotos,et al.  A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour , 1985 .

[26]  Jan Friso Groote,et al.  An algorithm for the asynchronous Write-All problem based on process collision , 2001, Distributed Computing.

[27]  Albert R. Meyer,et al.  Bisimulation can't be traced , 1988, POPL '88.

[28]  L. Aceto CPO Models for GSOS Languages - Part I: Compact GSOS Languages , 1994 .

[29]  Irek Ulidowski,et al.  Finite axiom systems for testing preorder and De Simone process languages , 1996, Theor. Comput. Sci..

[30]  Ag Engels,et al.  Why men (and octopuses) cannot juggle a four ball cascade , 1997 .

[31]  Jos C. M. Baeten,et al.  Specifying internet applications with DiCons , 2001, SAC.

[32]  J. Davenport Editor , 1960 .

[33]  Dieter Hogrefe,et al.  SDL : formal object-oriented language for communicating systems , 1997 .

[34]  J. Bergstra,et al.  Mode transfer in process algebra , 2000 .

[35]  van Km Kees Hee,et al.  An analytical method for assessing business processes , 1998 .

[36]  Jos C. M. Baeten,et al.  Real time process algebra with time-dependent conditions , 2001, J. Log. Algebraic Methods Program..

[37]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[38]  Roland Carl Backhouse,et al.  Final dialgebras: From categories to allegories , 1999, RAIRO Theor. Informatics Appl..

[39]  Roland Carl Backhouse,et al.  Calculating a Round-Robin Scheduler , 1998, MPC.

[40]  Jos C. M. Baeten,et al.  Embedding Untimed into Timed Process Algebra; the Case for Explicit Termination , 2003, EXPRESS.

[41]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[42]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[43]  Gjpm Geert-Jan Houben,et al.  A software architecture for generating hypermedia applications for ad-hoc database output , 1999 .

[44]  H. T. Riele,et al.  Centrum Voor Wiskunde En Informatica , 1996 .

[45]  Irek Ulidowski,et al.  Axiomatisations of Weak Equivalences for De Simone Languages , 1995, CONCUR.

[46]  Wil M.P. van der Aalst,et al.  WOFLAN : a Petri-net-based workflow analyzer , 1999 .

[47]  M Marc Voorhoeve,et al.  State-event net equivalance , 1998 .

[48]  R. Veltkamp,et al.  Efficient evaluation of triangular B-splines , 1999 .

[49]  Jozef Hooman,et al.  Semantical aspects of an architecture for distributed embedded systems , 2000, SAC '00.

[50]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[51]  Jozef Hooman,et al.  Process Algebra in PVS , 1999, TACAS.

[52]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[53]  Erik P. de Vink,et al.  Axiomatizing GSOS with termination , 2002, J. Log. Algebraic Methods Program..

[54]  Wil M. P. van der Aalst,et al.  Formalization and verification of event-driven process chains , 1999, Inf. Softw. Technol..

[55]  Jan J. M. M. Rutten Deriving Denotational Models for Bisimulation from Structured Operational Semantics , 1990, Programming Concepts and Methods.

[56]  van Km Kees Hee,et al.  A framework for component based software architectures , 1999 .

[57]  Jos L. M. Vrancken,et al.  The Algebra of Communicating Processes With Empty Process , 1997, Theor. Comput. Sci..

[58]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[59]  Sjouke Mauw,et al.  Message sequence charts in the software engineering process , 2001 .

[60]  Twan Basten,et al.  Partial-Order Process Algebra (and its Relation to Petri Nets) , 2001, Handbook of Process Algebra.

[61]  Chris Verhoef,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates and Negative Premises , 1994, Nord. J. Comput..

[62]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..