Similarity learning via dissimilarity space in CBIR

In this paper, we introduce a new approach to learn dissimilarity for interactive search in content based image retrieval. In literature, dissimilarity is often learned via the feature space by feature selection,feature weighting or a parameterized function of the features. Different from existing techniques, we use relevance feedback to adjust dissimilarity in a dissimilarity space. To create a dissimilarity space, we use Pekalska's method [15]. After the user gives feed-back, we apply active learning with one-class SVM on this space. Results on a Corel dataset of 10000 images and a TrecVid collection of 43907 keyframes show that our proposed approach can improve the retrieval performance over the feature space based approach.

[1]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Stéphane Marchand-Maillet,et al.  Learning User Queries in Multimodal Dissimilarity Spaces , 2005, Adaptive Multimedia Retrieval.

[3]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[4]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[5]  Qi Tian,et al.  Visualization and User-Modeling for Browsing Personal Photo Libraries , 2004, International Journal of Computer Vision.

[6]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Robert P. W. Duin,et al.  Prototype selection for dissimilarity-based classifiers , 2006, Pattern Recognit..

[8]  Arnold W. M. Smeulders,et al.  Active learning using pre-clustering , 2004, ICML.

[9]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[10]  David McG. Squire,et al.  Learning a similarity-based distance measure for image database organization from human partitionings of an image set , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[11]  Nikolas P. Galatsanos,et al.  A similarity learning approach to content-based image retrieval: application to digital mammography , 2004, IEEE Transactions on Medical Imaging.

[12]  Marcel Worring,et al.  MediaMill: exploring news video archives based on learned semantics , 2005, MULTIMEDIA '05.

[13]  G. P. Nguyen,et al.  Similarity based vizualization of image collections , 2005 .

[14]  Simone Santini,et al.  Emergent Semantics through Interaction in Image Databases , 2001, IEEE Trans. Knowl. Data Eng..

[15]  Robert P. W. Duin,et al.  Experiments with a featureless approach to pattern recognition , 1997, Pattern Recognit. Lett..

[16]  Cor J. Veenman,et al.  Robust Scene Categorization by Learning Image Statistics in Context , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[17]  Bir Bhanu,et al.  Learning feature relevance and similarity metrics in image databases , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[18]  Guangyou Xu,et al.  Similarity measure learning for image retrieval using feature subspace analysis , 2003, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003.

[19]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[20]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[21]  Malik Yousef,et al.  One-Class SVMs for Document Classification , 2002, J. Mach. Learn. Res..

[22]  G. P. Nguyen,et al.  Similarity Based Visualization of Image Collections , 2005 .

[23]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[24]  Edward Y. Chang,et al.  Discovery of a perceptual distance function for measuring image similarity , 2003, Multimedia Systems.

[25]  Wei-Ying Ma,et al.  Learning a semantic space from user's relevance feedback for image retrieval , 2003, IEEE Trans. Circuits Syst. Video Technol..

[26]  Robert P. W. Duin,et al.  Dissimilarity representations allow for building good classifiers , 2002, Pattern Recognit. Lett..

[27]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[28]  Kerry Rodden,et al.  Does organisation by similarity assist image browsing? , 2001, CHI.

[29]  Fatos T. Yarman-Vural,et al.  Learning similarity space , 2002, Proceedings. International Conference on Image Processing.

[30]  Marcel Worring,et al.  Scenario optimization for interactive category search , 2005, MIR '05.