Learning task-space synergies using Riemannian geometry

In the context of robotic control, synergies can form elementary units of behavior. By specifying task-dependent coordination behaviors at a low control level, one can achieve task-specific disturbance rejection. In this work we present an approach to learn the parameters of such low-level controllers by demonstration. We identify a synergy by extracting covariance information from demonstration data. The extracted synergy is used to derive a time-invariant state feedback controller through optimal control. To cope with the non-Euclidean nature of robot poses, we utilize Riemannian geometry, where both estimation of the covariance and the associated controller take into account the geometry of the pose manifold. We demonstrate the efficacy of the approach experimentally in a bimanual manipulation task.

[1]  Arthur E. Bryson,et al.  Dynamic Optimization , 1998 .

[2]  Darwin G. Caldwell,et al.  An Approach for Imitation Learning on Riemannian Manifolds , 2017, IEEE Robotics and Automation Letters.

[3]  Changbin Yu,et al.  Unit dual quaternion-based feedback linearization tracking problem for attitude and position dynamics , 2013, Syst. Control. Lett..

[4]  N. McClamroch,et al.  Rigid-Body Attitude Control , 2011, IEEE Control Systems.

[5]  Francesc Moreno-Noguer,et al.  3D Human Pose Tracking Priors using Geodesic Mixture Models , 2017, International Journal of Computer Vision.

[6]  Gijs Dubbelman,et al.  Intrinsic statistical techniques for robust pose estimation , 2011 .

[7]  Darwin G. Caldwell,et al.  Variable duration movement encoding with minimal intervention control , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[8]  F. Park Distance Metrics on the Rigid-Body Motions with Applications to Mechanism Design , 1995 .

[9]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[10]  Darwin G. Caldwell,et al.  A task-parameterized probabilistic model with minimal intervention control , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[11]  J A Scott Kelso,et al.  Synergies: atoms of brain and behavior. , 2009, Advances in experimental medicine and biology.

[12]  S. Bhat,et al.  A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .

[13]  Matteo Saveriano,et al.  Learning motion and impedance behaviors from human demonstrations , 2014, 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[14]  Gregor Schöner,et al.  Toward a new theory of motor synergies. , 2007, Motor control.

[15]  John Hauser,et al.  Optimal Control on Lie Groups: The Projection Operator Approach , 2013, IEEE Transactions on Automatic Control.

[16]  Sandra Hirche,et al.  Risk-Sensitive Optimal Feedback Control for Haptic Assistance , 2012, 2012 IEEE International Conference on Robotics and Automation.

[17]  Aude Billard,et al.  Learning Compliant Manipulation through Kinesthetic and Tactile Human-Robot Interaction , 2014, IEEE Transactions on Haptics.

[18]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[19]  Carme Torras,et al.  Learning Collaborative Impedance-Based Robot Behaviors , 2013, AAAI.

[20]  João Yoshiyuki Ishihara,et al.  Hybrid Kinematic Control for Rigid Body Pose Stabilization using Dual Quaternions , 2017, J. Frankl. Inst..

[21]  Bruno Vilhena Adorno,et al.  A dual quaternion linear-quadratic optimal controller for trajectory tracking , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Dagmar Sternad,et al.  Acquisition of novel and complex motor skills: stable solutions where intrinsic noise matters less. , 2014, Advances in experimental medicine and biology.

[23]  Helge J. Ritter,et al.  Gaussian Mixture Model for 3-DoF orientations , 2017, Robotics Auton. Syst..