Computational Fluid Dynamics on 3D Point Set Surfaces

Computational fluid dynamics (CFD) in many cases requires designing 3D models manually, which is a tedious task that requires specific skills. In this paper, we present a novel method for performing CFD directly on scanned 3D point clouds. The proposed method builds an anisotropic volumetric tetrahedral mesh adapted around a point-sampled surface, without an explicit surface reconstruction step. The surface is represented by a new extended implicit moving least squares (EIMLS) scalar representation that extends the definition of the function to the entire computational domain, which makes it possible for use in immersed boundary flow simulations. The workflow we present allows us to compute flows around point-sampled geometries automatically. It also gives a better control of the precision around the surface with a limited number of computational nodes, which is a critical issue in CFD.

[1]  Alexandre Boulch,et al.  Deep Learning for Robust Normal Estimation in Unstructured Point Clouds , 2016, Comput. Graph. Forum.

[2]  Charles S. Peskin,et al.  Flow patterns around heart valves: a digital computer method for solving the equations of motion , 1973 .

[3]  Gabriele Bitelli,et al.  From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure , 2015, Sensors.

[4]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[5]  Thierry Coupez,et al.  Parallel meshing and remeshing , 2000 .

[6]  Ravi Krishna Kolluri,et al.  Provably good moving least squares , 2005, SIGGRAPH Courses.

[7]  Andreas Nüchter,et al.  One billion points in the cloud – an octree for efficient processing of 3D laser scans , 2013 .

[8]  M J Fagan,et al.  A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. , 2004, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[9]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[10]  Jiaxin Zhao,et al.  Direct multiphase mesh generation from 3D images using anisotropic mesh adaptation and a redistancing equation. (Génération de maillage à partir d'images 3D en utilisant l'adaptation de maillage anisotrope et une équation de réinitialisation) , 2016 .

[11]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[12]  Thierry Coupez,et al.  Génération de maillage et adaptation de maillage par optimisation locale , 2000 .

[13]  Thierry Coupez,et al.  Implicit Boundary and Adaptive Anisotropic Meshing , 2015 .

[14]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[15]  Ulf Assarsson,et al.  High resolution sparse voxel DAGs , 2013, ACM Trans. Graph..

[16]  T. Coupez,et al.  Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing , 2011, J. Comput. Phys..

[17]  Pierre Alliez,et al.  Signing the Unsigned: Robust Surface Reconstruction from Raw Pointsets , 2010, Comput. Graph. Forum.

[18]  M. Gross,et al.  Algebraic point set surfaces , 2007, SIGGRAPH 2007.

[19]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[20]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[21]  François Goulette,et al.  Paris-rue-Madame Database - A 3D Mobile Laser Scanner Dataset for Benchmarking Urban Detection, Segmentation and Classification Methods , 2014, ICPRAM.

[22]  Markus H. Gross,et al.  Feature Preserving Point Set Surfaces based on Non‐Linear Kernel Regression , 2009, Comput. Graph. Forum.

[23]  Thierry Coupez,et al.  Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing , 2013 .

[24]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[25]  D. Cohen-Or,et al.  Robust moving least-squares fitting with sharp features , 2005, ACM Trans. Graph..

[26]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[27]  Thierry Coupez,et al.  Edge-Based Anisotropic Mesh Adaptation for CFD Applications , 2012, IMR.

[28]  Joachim Giesen,et al.  Delaunay Triangulation Based Surface Reconstruction , 2006 .

[29]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[30]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[31]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH 2005.

[32]  Alexandre Boulch,et al.  Fast and Robust Normal Estimation for Point Clouds with Sharp Features , 2012, Comput. Graph. Forum.

[33]  Daniela Oreni,et al.  BIM FROM LASER CLOUDS AND FINITE ELEMENT ANALYSIS: COMBINING STRUCTURAL ANALYSIS AND GEOMETRIC COMPLEXITY , 2015 .

[34]  Markus Gross,et al.  Point-Based Graphics , 2007 .

[35]  Pierre Alliez,et al.  Eurographics Symposium on Geometry Processing (2007) Voronoi-based Variational Reconstruction of Unoriented Point Sets , 2022 .

[36]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[37]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[39]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[40]  D. Comaniciu,et al.  Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images , 2011, Interface Focus.

[41]  F. Goulette,et al.  An integrated on-board laser range sensing system for on-the-way city and road modelling , 2006 .

[42]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[43]  Luca Bertola,et al.  Beyond Crude 3D Models: From Point Clouds to Historical Building Information Modeling via NURBS , 2014, EuroMed.

[44]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[45]  Pierre Alliez,et al.  State of the Art in Surface Reconstruction from Point Clouds , 2014, Eurographics.

[46]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[47]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[48]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[49]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[50]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH Courses.