Author ' s personal copy Decomposing the neural mechanisms of visual search through model-based analysis of fMRI : Top-down excitation , active ignoring and the use of saliency by the right TPJ

Despite being studied intensively over the past 30 years, the neural processes underlying visual search are not yet fully understood. In the current study we extend prior work using model-based analysis to decompose fMRI data. fMRI data on human search were assessed using activation functions predicted from the spiking Search over Time and Space model (sSoTS; Mavritsaki et al., 2006). Going beyond previous work, we show for the first time that activity in a central location map in the model, which computes the saliency of a target relative to distractors, correlated with the BOLD response in the right temporo-parietal junction (TPJ)--a key region implicated in clinical studies of unilateral neglect. This is consistent with the right TPJ responding to the relative saliency of visual stimuli. In addition, a re-analysis of search performance, with a larger participant set and a psychologically plausible response rule, showed distinct neural regions in parietal and occipital cortices linked to top-down excitation and the to active ignoring of distractors. The results indicate that excitatory and inhibitory circuits for visual selection can be separated, and that the right TPJ may be critical for responding to salient targets. The value of using a model-based approach is discussed.

[1]  A Treisman,et al.  Feature binding, attention and object perception. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  Alejandro Lleras,et al.  Inhibitory tagging in an interrupted visual search , 2009, Attention, perception & psychophysics.

[3]  R. Nicoll,et al.  Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. , 1984, The Journal of physiology.

[4]  D. Prince,et al.  GABA A receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex , 1998 .

[5]  G. Deco,et al.  Top-down selective visual attention: A neurodynamical approach , 2001 .

[6]  Gustavo Deco,et al.  Integrating fMRI and single-cell data of visual working memory , 2004, Neurocomputing.

[7]  Nancy Kanwisher,et al.  fMRI evidence for objects as the units of attentional selection , 1999, Nature.

[8]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[9]  D. Bouwhuis,et al.  Attention and performance X : control of language processes , 1986 .

[10]  H. J. Muller,et al.  SEarch via Recursive Rejection (SERR): A Connectionist Model of Visual Search , 1993, Cognitive Psychology.

[11]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[12]  Gustavo Deco,et al.  Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. , 2002, Cerebral cortex.

[13]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[14]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[15]  C. Kennard,et al.  The anatomy of visual neglect , 2003 .

[16]  Dietmar Heinke,et al.  Prioritization in visual search: Visual marking is not dependent on a mnemonic search , 2002, Perception & psychophysics.

[17]  A. Mizuno,et al.  A change of the leading player in flow Visualization technique , 2006, J. Vis..

[18]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[19]  Stephen Smith,et al.  Prioritizing new over old: An fMRI study of the preview search task , 2005, Human brain mapping.

[20]  F. Hamker A dynamic model of how feature cues guide spatial attention , 2004, Vision Research.

[21]  A. Treisman,et al.  Conjunction search revisited. , 1990, Journal of experimental psychology. Human perception and performance.

[22]  M. Corbetta,et al.  Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention , 2008, The Journal of Neuroscience.

[23]  M. Posner,et al.  Components of visual orienting , 1984 .

[24]  Jacqueline C Snow,et al.  Stimulus- and goal-driven biases of selective attention following unilateral brain damage: implications for rehabilitation of spatial neglect and extinction. , 2006, Restorative neurology and neuroscience.

[25]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[26]  E. Rolls,et al.  Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. , 2005, Journal of neurophysiology.

[27]  Dietmar Heinke,et al.  Suppressive effects in visual search: A neurocomputational analysis of preview search , 2007, Neurocomputing.

[28]  S. Yantis,et al.  Object continuity in apparent motion and attention. , 1994, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[29]  Pierre Baldi,et al.  A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition. , 2007, Journal of vision.

[30]  Sasa Kenjeres,et al.  Visualization of turbulence structures reorganization in thermal convection subjected to external magnetic field , 2004, J. Vis..

[31]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[32]  J. O'Doherty,et al.  Model‐Based fMRI and Its Application to Reward Learning and Decision Making , 2007, Annals of the New York Academy of Sciences.

[33]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[34]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  R. Luce,et al.  The Choice Axiom after Twenty Years , 1977 .

[36]  Robert T. Knight,et al.  Top-down Enhancement and Suppression of the Magnitude and Speed of Neural Activity , 2005, Journal of Cognitive Neuroscience.

[37]  Leila Reddy,et al.  Coding of visual objects in the ventral stream , 2006, Current Opinion in Neurobiology.

[38]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[39]  G. Humphreys,et al.  Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. , 1997, Psychological review.

[40]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[41]  Glyn W. Humphreys,et al.  Visual marking: using time in visual selection , 2003, Trends in Cognitive Sciences.

[42]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[43]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[44]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[45]  Glyn W. Humphreys,et al.  Visual marking inhibits singleton capture , 2003, Cognitive Psychology.

[46]  P. Matthews,et al.  A neural marker of content-specific active ignoring. , 2008, Journal of experimental psychology. Human perception and performance.

[47]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[48]  R. Nicoll,et al.  Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices , 1990, Neuron.

[49]  Martin Stetter,et al.  Modeling the Link between Functional Imaging and Neuronal Activity: Synaptic Metabolic Demand and Spike Rates , 2002, NeuroImage.

[50]  A. T. Smith,et al.  Attentional suppression of activity in the human visual cortex , 2000, Neuroreport.

[51]  Dietmar Heinke,et al.  Featural guidance in conjunction search: the contrast between orientation and color. , 2010, Journal of experimental psychology. Human perception and performance.

[52]  Jacqueline C Snow,et al.  Goal-driven selective attention in patients with right hemisphere lesions: how intact is the ipsilesional field? , 2006, Brain : a journal of neurology.

[53]  Glyn W. Humphreys,et al.  Model Based Analysis of fMRI-Data: Applying the sSoTS Framework to the Neural Basic of Preview Search , 2009, WAPCV.

[54]  Derrick G. Watson,et al.  Visual marking: Evidence for inhibition using a probe-dot detection paradigm , 2000, Perception & psychophysics.

[55]  Leslie G. Ungerleider,et al.  A neural system for human visual working memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Glyn W. Humphreys,et al.  Separating distractor rejection and target detection in posterior parietal cortex—an event-related fMRI study of visual marking , 2003, NeuroImage.

[57]  Glyn W. Humphreys,et al.  Comparing Segmentation by Time and by Motion in Visual Search: An fMRI Investigation , 2011, Journal of Cognitive Neuroscience.

[58]  John K. Tsotsos,et al.  Attention in Cognitive Systems, 5th International Workshop on Attention in Cognitive Systems, WAPCV 2008, Fira, Santorini, Greece, May 12, 2008, Revised Selected Papers , 2009, WAPCV.

[59]  G W Humphreys,et al.  Driving attention with the top down: The relative contribution of target templates to the linear separability effect in the size dimension , 2001, Perception & psychophysics.

[60]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[61]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[62]  Dietmar Heinke,et al.  Simulating posterior parietal damage in a biologically plausible framework: Neuropsychological tests of the search over time and space model , 2009, Cognitive neuropsychology.

[63]  Min-Shik Kim,et al.  Perceptual grouping via spatial selection in a focused-attention task , 2001, Vision Research.

[64]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[65]  G. Humphreys,et al.  An analysis of the time course of attention in preview search , 2004, Perception & psychophysics.

[66]  Paul Antoine Salin,et al.  Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. , 1996, Journal of neurophysiology.

[67]  Olaf B. Paulson,et al.  Parieto–Occipital Areas Involved in Efficient Filtering in Search: A Time Course Analysis of Visual Marking using Behavioural and Functional Imaging Procedures , 2004, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[68]  G. Humphreys,et al.  Previewing distracters reduces their effective contrast , 2007, Vision Research.

[69]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[70]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[71]  D. Prince,et al.  GABAA receptor‐mediated currents in interneurons and pyramidal cells of rat visual cortex , 1998, The Journal of physiology.

[72]  Xiao-Jing Wang,et al.  Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron , 2004, Journal of Computational Neuroscience.

[73]  K. Lovblad,et al.  Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. , 2010, Brain : a journal of neurology.

[74]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[75]  Mieke Donk,et al.  Prioritized selection in visual search through onset capture and color inhibition: evidence from a probe-dot detection task. , 2005, Journal of experimental psychology. Human perception and performance.

[76]  G. Humphreys,et al.  Attention, spatial representation, and visual neglect: simulating emergent attention and spatial memory in the selective attention for identification model (SAIM). , 2003, Psychological review.

[77]  S. Ferber,et al.  Spatial awareness is a function of the temporal not the posterior parietal lobe , 2001, Nature.

[78]  Glyn W. Humphreys,et al.  The effect of cueing on unilateral neglect , 1983, Neuropsychologia.

[79]  Johan Hulleman,et al.  Revisiting preview search at isoluminance: New onsets are not necessary for the preview advantage , 2005, Perception & psychophysics.

[80]  Dietmar Heinke,et al.  A computational model of visual marking using an inter-connected network of spiking neurons: The spiking search over time & space model (sSoTS) , 2006, Journal of Physiology-Paris.

[81]  Gustavo Deco,et al.  Feature-based Attention in Human Visual Cortex: Simulation of Fmri Data , 2003 .

[82]  Y. Tsal,et al.  The attentional white bear phenomenon: the mandatory allocation of attention to expected distractor locations. , 2006, Journal of experimental psychology. Human perception and performance.