Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors
暂无分享,去创建一个
Qun Wang | Liqun Qi | Yannan Chen | L. Qi | Yannan Chen | Qun Wang
[1] A. Ivic. Sums of squares , 2020, An Introduction to 𝑞-analysis.
[2] Yimin Wei,et al. Fast Hankel Tensor-Vector Products and Application to Exponential Data Fitting , 2014, 1401.6238.
[3] Roy S. Smith,et al. Frequency Domain Subspace Identification Using Nuclear Norm Minimization and Hankel Matrix Realizations , 2014, IEEE Transactions on Automatic Control.
[4] L. Qi,et al. SOS-Hankel Tensors: Theory and Application , 2014, 1410.6989.
[5] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[6] Graziano Chesi,et al. On the Gap Between Positive Polynomials and SOS of Polynomials , 2007, IEEE Transactions on Automatic Control.
[7] Lynn Burroughs,et al. Interpolation Using Hankel Tensor Completion , 2013 .
[8] S. Vanhuffel,et al. Algorithm for time-domain NMR data fitting based on total least squares , 1994 .
[9] Carla Fidalgo,et al. Positive semidefinite diagonal minus tail forms are sums of squares , 2011 .
[10] Man-Duen Choi,et al. Extremal positive semidefinite forms , 1977 .
[11] L. De Lathauwer,et al. Exponential data fitting using multilinear algebra: the decimative case , 2009 .
[12] Lieven De Lathauwer,et al. Higher Order Tensor-Based Method for Delayed Exponential Fitting , 2007, IEEE Transactions on Signal Processing.
[13] L. Qi,et al. Positive Semi-Definiteness of Generalized Anti-Circulant Tensors , 2014, 1411.6805.
[14] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[15] D. J. Newman,et al. Arithmetic, Geometric Inequality , 1960 .
[16] O. Taussky. Sums of Squares , 1970 .
[17] Olga Taussky-Todd. SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .
[18] M. Sacchi,et al. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .
[19] Y. Ye,et al. Linear operators and positive semidefiniteness of symmetric tensor spaces , 2015 .
[20] Qun Wang,et al. Computing Extreme Eigenvalues of Large Scale Hankel Tensors , 2016, J. Sci. Comput..
[21] J.-G. Luque,et al. Hankel hyperdeterminants and Selberg integrals , 2003 .
[22] Sabine Van Huffel,et al. Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..
[23] Guoyin Li,et al. A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure , 2014, J. Optim. Theory Appl..
[24] Didier Henrion,et al. GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..
[25] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[26] Roland Badeau,et al. Fast Multilinear Singular Value Decomposition for Structured Tensors , 2008, SIAM J. Matrix Anal. Appl..
[27] L. Qi. Hankel Tensors: Associated Hankel Matrices and Vandermonde Decomposition , 2013, 1310.5470.
[28] Amir Ali Ahmadi,et al. A convex polynomial that is not sos-convex , 2009, Mathematical Programming.
[29] Yimin Wei,et al. Fast Hankel tensor–vector product and its application to exponential data fitting , 2015, Numer. Linear Algebra Appl..
[30] Johan Löfberg,et al. Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.
[31] D. Hilbert. Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .
[32] Guoyin Li,et al. Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming , 2013, J. Optim. Theory Appl..
[33] Changqing Xu. Hankel tensors, Vandermonde tensors and their positivities☆ , 2016 .
[34] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[35] Liqun Qi,et al. Are There Sixth Order Three Dimensional PNS Hankel Tensors , 2014 .