Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors

A symmetric positive semi-definite (PSD) tensor, which is not sum-of-squares (SOS), is called a PSD non-SOS (PNS) tensor. Is there a fourth order four dimensional PNS Hankel tensor? The answer for this question has both theoretical and practical significance. Under the assumptions that the generating vector v of a Hankel tensor A is symmetric and the fifth element v 4 of v is fixed at 1 , we show that there are two surfaces M 0 and N 0 with the elements v 2 , v 6 , v 1 , v 3 , v 5 of v as variables, such that M 0 ? N 0 , A is SOS if and only if v 0 ? M 0 , and A is PSD if and only if v 0 ? N 0 , where v 0 is the first element of v . If M 0 = N 0 for a point P = ( v 2 , v 6 , v 1 , v 3 , v 5 ) ? , there are no fourth order four dimensional PNS Hankel tensors with symmetric generating vectors for such v 2 , v 6 , v 1 , v 3 , v 5 . Then, we call such P a PNS-free point. We prove that a 45 -degree planar closed convex cone, a segment, a ray and an additional point are PNS-free. Numerical tests check various grid points and report that they are all PNS-free.

[1]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[2]  Yimin Wei,et al.  Fast Hankel Tensor-Vector Products and Application to Exponential Data Fitting , 2014, 1401.6238.

[3]  Roy S. Smith,et al.  Frequency Domain Subspace Identification Using Nuclear Norm Minimization and Hankel Matrix Realizations , 2014, IEEE Transactions on Automatic Control.

[4]  L. Qi,et al.  SOS-Hankel Tensors: Theory and Application , 2014, 1410.6989.

[5]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[6]  Graziano Chesi,et al.  On the Gap Between Positive Polynomials and SOS of Polynomials , 2007, IEEE Transactions on Automatic Control.

[7]  Lynn Burroughs,et al.  Interpolation Using Hankel Tensor Completion , 2013 .

[8]  S. Vanhuffel,et al.  Algorithm for time-domain NMR data fitting based on total least squares , 1994 .

[9]  Carla Fidalgo,et al.  Positive semidefinite diagonal minus tail forms are sums of squares , 2011 .

[10]  Man-Duen Choi,et al.  Extremal positive semidefinite forms , 1977 .

[11]  L. De Lathauwer,et al.  Exponential data fitting using multilinear algebra: the decimative case , 2009 .

[12]  Lieven De Lathauwer,et al.  Higher Order Tensor-Based Method for Delayed Exponential Fitting , 2007, IEEE Transactions on Signal Processing.

[13]  L. Qi,et al.  Positive Semi-Definiteness of Generalized Anti-Circulant Tensors , 2014, 1411.6805.

[14]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[15]  D. J. Newman,et al.  Arithmetic, Geometric Inequality , 1960 .

[16]  O. Taussky Sums of Squares , 1970 .

[17]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[18]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[19]  Y. Ye,et al.  Linear operators and positive semidefiniteness of symmetric tensor spaces , 2015 .

[20]  Qun Wang,et al.  Computing Extreme Eigenvalues of Large Scale Hankel Tensors , 2016, J. Sci. Comput..

[21]  J.-G. Luque,et al.  Hankel hyperdeterminants and Selberg integrals , 2003 .

[22]  Sabine Van Huffel,et al.  Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..

[23]  Guoyin Li,et al.  A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure , 2014, J. Optim. Theory Appl..

[24]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[25]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[26]  Roland Badeau,et al.  Fast Multilinear Singular Value Decomposition for Structured Tensors , 2008, SIAM J. Matrix Anal. Appl..

[27]  L. Qi Hankel Tensors: Associated Hankel Matrices and Vandermonde Decomposition , 2013, 1310.5470.

[28]  Amir Ali Ahmadi,et al.  A convex polynomial that is not sos-convex , 2009, Mathematical Programming.

[29]  Yimin Wei,et al.  Fast Hankel tensor–vector product and its application to exponential data fitting , 2015, Numer. Linear Algebra Appl..

[30]  Johan Löfberg,et al.  Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.

[31]  D. Hilbert Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[32]  Guoyin Li,et al.  Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming , 2013, J. Optim. Theory Appl..

[33]  Changqing Xu Hankel tensors, Vandermonde tensors and their positivities☆ , 2016 .

[34]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[35]  Liqun Qi,et al.  Are There Sixth Order Three Dimensional PNS Hankel Tensors , 2014 .