On the interconnections between various analytic approaches in coupled first-order nonlinear differential equations
暂无分享,去创建一个
M. Lakshmanan | V. K. Chandrasekar | R. Mohanasubha | M. Senthilvelan | M. Lakshmanan | M. Senthilvelan | R. Mohanasubha
[1] M. C. Nucci,et al. Jacobi Last Multiplier and Lie Symmetries: A Novel Application of an Old Relationship , 2005 .
[2] M. Lakshmanan,et al. Painlevé analysis, Lie symmetries, and integrability of coupled nonlinear oscillators of polynomial type , 1993 .
[3] J. L. Romero,et al. Nonlocal Symmetries, Telescopic Vector Fields and λ-Symmetries of Ordinary Differential Equations , 2012, 1212.6475.
[4] L. G. S. Duarte,et al. Solving second-order ordinary differential equations by extending the Prelle-Singer method , 2001 .
[5] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[6] V. K. Chandrasekar,et al. Extended Prelle-Singer Method and Integrability/Solvability of a Class of Nonlinear nth Order Ordinary Differential Equations , 2005, nlin/0501045.
[7] J. L. Romero,et al. Integrating Factors and λ–Symmetries , 2008 .
[8] Jaume Llibre,et al. Qualitative Theory of Planar Differential Systems , 2006 .
[9] G. Gaeta. Simple and collective twisted symmetries , 2014, Journal of Nonlinear Mathematical Physics.
[10] G. Darboux,et al. Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .
[11] C. Jacobi,et al. Sul principio dell'ultimo moltiplicatore e suo uso come nuovo principio generale di meccanica , 2013 .
[12] Michael F. Singer,et al. Elementary first integrals of differential equations , 1983 .
[13] C. Muriel,et al. New methods of reduction for ordinary differential equations , 2001 .
[14] J. Llibre,et al. On the Darboux Integrability of Polynomial Differential Systems , 2012 .
[15] H. Stephani. Differential Equations: Their Solution Using Symmetries , 1990 .
[16] Alfred Ramani,et al. The Painlevé property and singularity analysis of integrable and non-integrable systems , 1989 .
[17] M Senthilvelan,et al. On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] G. Gaeta. TWISTED SYMMETRIES OF DIFFERENTIAL EQUATIONS , 2009, 1002.1487.
[19] V. K. Chandrasekar,et al. On the complete integrability and linearization of nonlinear ordinary differential equations. IV. Coupled second-order equations , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[20] J. L. Romero,et al. First integrals, integrating factors and λ-symmetries of second-order differential equations , 2009 .
[21] V. K. Chandrasekar,et al. On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[22] Shanmuganathan Rajasekar,et al. Nonlinear dynamics : integrability, chaos, and patterns , 2003 .
[23] G. Bluman,et al. Erratum: Integrating factors and first integrals for ordinary differential equations , 1999, European Journal of Applied Mathematics.
[24] J. Llibre,et al. Integrability of the 2D Lotka-Volterra system via polynomial first integrals and polynomial inverse integrating factors , 2000 .