Improved impulse method to evaluate the low weight profile of sparse binary linear codes

In this paper, the impulse method to determine the low weight profile of sparse codes is improved based on efficient probabilistic approaches for reliability based decoding that are adapted to this problem. As a result, compared with previous approaches, the same low weight profile can be obtained with a significant time reduction (for example from 30 hours to a few minutes) or more complete low weight profiles can be determined in the same amount of time.

[1]  Evangelos Eleftheriou,et al.  Approximate algorithms for computing the minimum distance of low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[2]  Stephen G. Wilson,et al.  A General Method for Finding Low Error Rates of LDPC Codes , 2006, ArXiv.

[3]  Claude Berrou,et al.  Computing the minimum distance of linear codes by the error impulse method , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[4]  Jacques Stern,et al.  A method for finding codewords of small weight , 1989, Coding Theory and Applications.

[5]  David J. C. MacKay,et al.  Encyclopedia of Sparse Graph Codes , 1999 .

[6]  Masakatu Morii,et al.  On the Reliability for the Weight Distribution of LDPC codes Computed by the Probabilistic Algorithm(HISC2006) , 2006 .

[7]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[8]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[9]  Gerd Richter,et al.  Finding Small Stopping Sets in the Tanner Graphs of LDPC Codes , 2006 .

[10]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[11]  Shu Lin,et al.  Error Control Coding , 2004 .

[12]  Paul Guinand,et al.  Estimating the minimum distance of turbo-codes using double and triple impulse methods , 2005, IEEE Communications Letters.

[13]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[14]  Marc P. C. Fossorier,et al.  Box and match techniques applied to soft-decision decoding , 2002, IEEE Transactions on Information Theory.

[15]  A. Valembois,et al.  Box and match techniques applied to soft-decision decoding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[16]  C. Berrou,et al.  Computing the minimum distances of linear codes by the error impulse method , 2002, Proceedings IEEE International Symposium on Information Theory,.

[17]  Daniel J. Costello,et al.  Error Control Coding, Second Edition , 2004 .

[18]  Anne Canteaut,et al.  A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length , 1998 .

[19]  Masakatu Morii,et al.  A probabilistic computation method for the weight distribution of low-density parity-check codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..