DIAGONALIZABLE QUADRATIC EIGENVALUE PROBLEMS
暂无分享,去创建一个
[1] M. Friswell,et al. CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS. PART II: ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS , 2002 .
[2] G. M. L. Gladwell. Isospectral Vibrating Systems , 2006 .
[3] Uwe Prells,et al. Isospectral families of high‐order systems , 2007 .
[4] Uwe Prells,et al. General isospectral flows for linear dynamic systems , 2004 .
[5] Karl Meerbergen,et al. Fast frequency response computation for Rayleigh damping , 2008 .
[6] M. Chu,et al. Total decoupling of general quadratic pencils, Part I: Theory , 2008 .
[7] Leiba Rodman,et al. Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..
[8] Peter Lancaster,et al. Inverse Spectral Problems for Semisimple Damped Vibrating Systems , 2007, SIAM J. Matrix Anal. Appl..
[9] Leiba Rodman,et al. Spectral analysis of selfadjoint matrix polynomials , 1980 .
[10] Uwe Prells,et al. Isospectral Vibrating Systems, Part 2: Structure Preserving Transformations , 2005 .
[11] Thomas K. Caughey,et al. Analysis of Linear Nonconservative Vibrations , 1995 .
[12] Uwe Prells,et al. Inverse problems for damped vibrating systems , 2005 .
[13] T. Caughey,et al. Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .
[14] Chun-Hua Guo,et al. Newton's Method for Discrete Algebraic Riccati Equations when the Closed-Loop Matrix Has Eigenvalues on the Unit Circle , 1999, SIAM J. Matrix Anal. Appl..
[15] J. M. Wilson,et al. Criterion for decoupling dynamic equations of motion of linear gyroscopic systems , 1992 .
[16] M. Chu,et al. Total decoupling of general quadratic pencils, Part II: Structure preserving isospectral flows , 2008 .