DIAGONALIZABLE QUADRATIC EIGENVALUE PROBLEMS

Abstract A system is defined to be an n × n matrix function L ( λ ) = λ 2 M + λ D + K where M , D , K ∈ C n × n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L ( λ ) . However, the main contribution is a complete description of the much wider class of systems which can be decoupled by applying congruence or strict equivalence transformations to a linearization of a system while preserving the structure of L ( λ ) . The theory is liberally illustrated with examples.

[1]  M. Friswell,et al.  CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS. PART II: ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS , 2002 .

[2]  G. M. L. Gladwell Isospectral Vibrating Systems , 2006 .

[3]  Uwe Prells,et al.  Isospectral families of high‐order systems , 2007 .

[4]  Uwe Prells,et al.  General isospectral flows for linear dynamic systems , 2004 .

[5]  Karl Meerbergen,et al.  Fast frequency response computation for Rayleigh damping , 2008 .

[6]  M. Chu,et al.  Total decoupling of general quadratic pencils, Part I: Theory , 2008 .

[7]  Leiba Rodman,et al.  Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..

[8]  Peter Lancaster,et al.  Inverse Spectral Problems for Semisimple Damped Vibrating Systems , 2007, SIAM J. Matrix Anal. Appl..

[9]  Leiba Rodman,et al.  Spectral analysis of selfadjoint matrix polynomials , 1980 .

[10]  Uwe Prells,et al.  Isospectral Vibrating Systems, Part 2: Structure Preserving Transformations , 2005 .

[11]  Thomas K. Caughey,et al.  Analysis of Linear Nonconservative Vibrations , 1995 .

[12]  Uwe Prells,et al.  Inverse problems for damped vibrating systems , 2005 .

[13]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[14]  Chun-Hua Guo,et al.  Newton's Method for Discrete Algebraic Riccati Equations when the Closed-Loop Matrix Has Eigenvalues on the Unit Circle , 1999, SIAM J. Matrix Anal. Appl..

[15]  J. M. Wilson,et al.  Criterion for decoupling dynamic equations of motion of linear gyroscopic systems , 1992 .

[16]  M. Chu,et al.  Total decoupling of general quadratic pencils, Part II: Structure preserving isospectral flows , 2008 .