Resource control graphs
暂无分享,去创建一个
[1] John C. Shepherdson,et al. Computability of Recursive Functions , 1963, JACM.
[2] James Avery,et al. Size-Change Termination and Bound Analysis , 2006, FLOPS.
[3] Martin Hofmann,et al. Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[4] Yehoshua Bar-Hillel,et al. The Intrinsic Computational Difficulty of Functions , 1969 .
[5] Stephen A. Cook,et al. A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.
[6] Neil D. Jones,et al. The size-change principle for program termination , 2001, POPL '01.
[7] Neil D. Jones,et al. The Flow of Data and the Complexity of Algorithms , 2005, CiE.
[8] Thorsten Altenkirch,et al. Under Consideration for Publication in J. Functional Programming a Predicative Analysis of Structural Recursion , 2022 .
[9] Jean-Yves Marion,et al. Quasi-interpretation: a way to control ressources , 2005 .
[10] Christophe Reutenauer,et al. Aspects mathématiques des réseaux de pétri , 1988 .
[11] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[12] Jean-Yves Marion,et al. Heap-size analysis for assembly programs , 2006 .
[13] Jean-Yves Moyen. SCT and the idempotence condition , 2008 .
[14] David Aspinall,et al. Heap-Bounded Assembly Language , 2004, Journal of Automated Reasoning.
[15] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[16] Andrea Asperti,et al. The intensional content of Rice's theorem , 2008, POPL '08.
[17] Loïc Colson. The Logic in Computer Science Column Functions versus Algorithms , 1998, Bull. EATCS.
[18] Henning Wunderlich,et al. Certifying Polynomial Time and Linear/Polynomial Space for Imperative Programs , 2006, SIAM J. Comput..
[19] Neil D. Jones. The expressive power of higher-order types or, life without CONS , 2001, J. Funct. Program..
[20] M. Hofmann. A Type System for Bounded Space and Functional In-Place Update , 2000, Nord. J. Comput..
[21] Daniel Leivant,et al. Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.
[22] George C. Necula,et al. Proof-carrying code , 1997, POPL '97.
[23] H. Rice. Classes of recursively enumerable sets and their decision problems , 1953 .
[24] Neil D. Jones,et al. Computability and complexity - from a programming perspective , 1997, Foundations of computing series.
[25] Amir M. Ben-Amram. Size-change termination with difference constraints , 2008, TOPL.
[26] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[27] Yuri V. Matiyasevich,et al. Hilbert's 10th Problem , 1993 .
[28] Loïc Colson. Functions Versus Algorithms , 2001, Current Trends in Theoretical Computer Science.
[29] Yuri Gurevich,et al. Contextual Semantics: From QuantumMechanics to Logic, Databases, Constraints, and Complexity , 2014 .
[30] Stephen A. Cook,et al. A new recursion-theoretic characterization of the polytime functions (extended abstract) , 1992, STOC '92.
[31] Flemming Nielson,et al. Principles of Program Analysis , 1999, Springer Berlin Heidelberg.
[32] Silvano Dal-Zilio,et al. A Functional Scenario for Bytecode Verification of Resource Bounds , 2004, CSL.
[33] Guillaume Bonfante,et al. Quasi-interpretations a way to control resources , 2011, Theor. Comput. Sci..