Regularity criteria for the three-dimensional magnetohydrodynamic equations

NSFC [11171154, 11271184, 11271305, 10976026]; PAPD; Fundamental Research Funds for the Central Universities; [NCET-11-0227]

[1]  T. Lelièvre,et al.  Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .

[2]  Hongjun Gao,et al.  Two component regularity for the Navier-Stokes equations. , 2009 .

[3]  H. Triebel Theory Of Function Spaces , 1983 .

[4]  Zhifei Zhang,et al.  The BKM criterion for the 3D Navier-Stokes equations via two velocity components , 2010 .

[5]  Zhouping Xin,et al.  Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .

[6]  Brigitte Maier,et al.  Electrodynamics Of Continuous Media , 2016 .

[7]  Hyunseok Kim,et al.  A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier-Stokes Equations , 2006, SIAM J. Math. Anal..

[8]  L. Berselli,et al.  On the Vanishing Viscosity Limit of 3D Navier-Stokes Equations under Slip Boundary Conditions in General Domains , 2012 .

[9]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[10]  Hammadi Abidi,et al.  Résultats d’existence dans des espaces critiques pour le système de la MHD inhomogène , 2007 .

[11]  Hongwei Wu,et al.  Strong solutions to the incompressible magnetohydrodynamic equations with vacuum , 2011, Comput. Math. Appl..

[12]  H. Beirão da Veiga,et al.  Sharp Inviscid Limit Results under Navier Type Boundary Conditions. An Lp Theory , 2010 .

[13]  Yong Zhou,et al.  A regularity criterion for the density‐dependent magnetohydrodynamic equations , 2010 .

[14]  Tohru Ozawa,et al.  Interpolation inequalities in Besov spaces , 2002 .

[15]  Jean-Frédéric Gerbeau,et al.  Existence of solution for a density-dependent magnetohydrodynamic equation , 1997, Advances in Differential Equations.

[16]  Xinying Xu,et al.  A BLOW-UP CRITERION FOR 3D COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM , 2012 .

[17]  Jing Li,et al.  Serrin-Type Blowup Criterion for Viscous, Compressible, and Heat Conducting Navier-Stokes and Magnetohydrodynamic Flows , 2012, 1210.5930.

[18]  O. Rozanova Nonexistence results for a compressible non-Newtonian fluid with magnetic effects in the whole space☆ , 2010, 1008.4455.

[19]  Hammadi Abidi,et al.  Global existence for the magnetohydrodynamic system in critical spaces , 2008, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  G. Burton Sobolev Spaces , 2013 .

[21]  O. Rozanova Blow up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations , 2008, 0804.1549.

[22]  B. Desjardins,et al.  Remarks on a nonhomogeneous model of magnetohydrodynamics , 1998, Differential and Integral Equations.

[23]  Zhong Tan,et al.  Strong solutions to the incompressible magnetohydrodynamic equations , 2011 .

[24]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[25]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[26]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .