First principles calculation of redox potential for tetravalent actinides in molten LiCl–KCl eutectic based on vertical substitution and relaxation

[1]  Jia Song,et al.  Towards the calculations of redox potentials in molten LiCl-KCl eutectic by ensemble averages based on first principles molecular dynamics , 2017 .

[2]  Jia Song,et al.  First-principles molecular dynamics modeling of UCl3 in LiCl-KCl eutectic , 2017 .

[3]  Jia Song,et al.  Dynamic Fluctuation of U3+ Coordination Structure in the Molten LiCl-KCl Eutectic via First Principles Molecular Dynamics Simulations. , 2017, The journal of physical chemistry. A.

[4]  T. Van Voorhis,et al.  Adiabatic Approximation in Explicit Solvent Models of RedOx Chemistry. , 2016, Journal of chemical theory and computation.

[5]  Y. Tateyama,et al.  A method to calculate redox potentials relative to the normal hydrogen electrode in nonaqueous solution by using density functional theory-based molecular dynamics. , 2015, Physical chemistry chemical physics : PCCP.

[6]  Dane Morgan,et al.  Redox condition in molten salts and solute behavior: A first-principles molecular dynamics study , 2015 .

[7]  S. Noh,et al.  Multi‐scale computational study of the molten salt based recycling of spent nuclear fuels , 2014 .

[8]  D. Morgan,et al.  First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute , 2014 .

[9]  A. Kruizenga,et al.  Molten nitrate salts at 600 and 680 °C: Thermophysical property changes and corrosion of high-temperature nickel alloys , 2014 .

[10]  Jinsuo Zhang Electrochemistry of actinides and fission products in molten salts—Data review , 2014 .

[11]  D. Morgan,et al.  Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation , 2013 .

[12]  V. Y. Buz’ko,et al.  Solvation and microdynamics of uranium(IV) in 2LiF-BeF2 melts according to molecular dynamics calculations , 2013, Russian Journal of Inorganic Chemistry.

[13]  T. Nenoff,et al.  First Principles Calculations of Atomic Nickel Redox Potentials and Dimerization Free Energies: A Study of Metal Nanoparticle Growth. , 2011, Journal of Chemical Theory and Computation.

[14]  K. M. Goff,et al.  Actinide Recovery Experiments with Bench-Scale Liquid Cadmium Cathode in Real Fission Product-Laden Molten Salt , 2009 .

[15]  Han-Soo Lee,et al.  A CONCEPTUAL STUDY OF PYROPROCESSING FOR RECOVERING ACTINIDES FROM SPENT OXIDE FUELS , 2008 .

[16]  M. Sulpizi,et al.  Acidity constants from vertical energy gaps: density functional theory based molecular dynamics implementation. , 2008, Physical chemistry chemical physics : PCCP.

[17]  P. Madden,et al.  Calculation of activities of ions in molten salts with potential application to the pyroprocessing of nuclear waste. , 2008, The journal of physical chemistry. B.

[18]  M. Fukushima,et al.  Integrated Experiments of Electrometallurgical Pyroprocessing Using Plutonium Oxide , 2007 .

[19]  Michiel Sprik,et al.  Diabatic free energy curves and coordination fluctuations for the aqueous Ag+Ag2+ redox couple: a biased Born-Oppenheimer molecular dynamics investigation. , 2006, The Journal of chemical physics.

[20]  R. Konings,et al.  Thermochemical Properties of Lanthanides (Ln = La, Nd) and Actinides (An = U, Np, Pu, Am) in the Molten LiCl-KCl Eutectic , 2005 .

[21]  C. Adamo,et al.  A theoretical investigation of gadolinium (III) solvation in molten salts. , 2005, The Journal of chemical physics.

[22]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[23]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[24]  Tadashi Inoue,et al.  Measurement of standard potentials of actinides (U,Np,Pu,Am) in LiCl–KCl eutectic salt and separation of actinides from rare earths by electrorefining , 1998 .

[25]  J. J. Roy,et al.  Separation of Actinides from Rare Earth Elements by Electrorefining in LiCl-KCl Eutectic Salt , 1998 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[28]  J. J. Roy,et al.  Thermodynamic Properties of U, Np, Pu, and Am in Molten LiCl‐KCl Eutectic and Liquid Cadmium , 1996 .

[29]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[30]  Kieron Burke,et al.  Comparison shopping for a gradient-corrected density functional , 1996 .

[31]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[32]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[33]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[34]  J. E. Battles,et al.  Electrorefining of uranium and plutonium - A literature review , 1992 .

[35]  G. Janz,et al.  Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems , 1979 .

[36]  K. Schwochau,et al.  Schwingunsspektren und kraftkonstanten der actinid(IV)chloride ThCl4, PaCl4, UCl4 und NpCl4 , 1974 .

[37]  G. S. Smith,et al.  Refinement of the crystal structure of ThCl4 , 1969 .

[38]  Liuming Yan,et al.  On the First Principles Calculation of Redox Potential in Molten LiCl-KCl Eutectic Based on Adiabatic Substitution , 2017 .

[39]  M. Galetz,et al.  Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 °C , 2016 .

[40]  M. T. Harrison,et al.  International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels , 2015 .

[41]  Jinsuo Zhang,et al.  Direct Calculation of Concentration-Dependent Activity Coefficient of UCl3 in Molten LiCl-KCl , 2015 .

[42]  S. Pavel,et al.  Pyrochemical processes for recovery of actinides from spent nuclear fuels , 2015 .

[43]  P. Masset,et al.  Solubility of Sodium in Sodium Chloride: A Density Functional Theory Molecular Dynamics Study , 2014 .

[44]  P. Souček,et al.  Pyrochemical Reprocessing of Spent Fuel by Electrochemical Techniques Using Solid Aluminium Cathodes , 2011 .

[45]  I. May An EXAFS Spectroscopy Study of Speciation of Uranium and Some Fission Product Elements in Chloride Melts , 2004 .

[46]  M. Tosi,et al.  Ionic Interactions in Actinide Tetrahalides , 2001 .